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A recently proposed theory for diffusion-limited aggregation (DLA), which 
models this system as a random branched growth process, is reviewed. Like 
DLA, this process is stochastic, and ensemble averaging is needed in order to 
define multifractal dimensions. In an earlier work by Halsey and Leibig, 
annealed average dimensions were computed for this model. In this paper, we 
compute the quenched average dimensions, which are expected to apply to 
typical members of the ensemble. We develop a perturbative expansion for the 
average of the logarithm of the multifractal partition function; the leading and 
subleading divergent terms in this expansion are then resummed to all orders. 
The result is that in the limit where the number of particles n - ,  oo, the quenched 
and annealed dimensions are Meatical; however, the attainment of this limit 
requires enormous values of n. At smaller, more realistic values of n, the 
apparent quenched dimensions differ from the annealed dimensions. We inter- 
pret these results to mean that while multifractality as an ensemble property of 
random branched growth (and hence of DLA) is quite robust, it subtly fails for 
typical members of the ensemble. 

KEY WORDS: Diffusion-limited aggregation; pattern formation; branched 
growth. 

1. I N T R O D U C T I O N  

M a n y  na tu r a l  g r o w t h  p rocesses  g e n e r a t e  b r a n c h e d  s t ruc tures .  P r o b a b l y  

the  m o s t  c e l eb ra t ed  such  process  is d i f fus ion- l imi ted  a g g r e g a t i o n  ( D L A ) .  

A s imple  a l g o r i t h m  for this  type  o f  g r o w t h  process ,  i n t r o d u c e d  by W i t t e n  

and  Sander , .  has  a l l o w e d  o v e r  t en  years  o f  n u m e r i c a l  e x p l o r a t i o n  o f  its 

m y s t e r i o u s  p roper t i es .  "-41 Theo re t i c a l l y ,  there  has  been  less progress .  

A n u m b e r  o f  s tudies  have ,  w i th  g rea t e r  o r  lesser  success,  used  rea l - space  
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renormalization or variants thereof to study the self-similarity of DLA 
clusters j5 7~ An alternative approach has been to try to deepen our under- 
standing of the scaling structure of DLA clusters by emphasizing the 
"multifractal" nature of the growth of such clustersJ 8-~~ 

Recently, a quite broad framework has been proposed to study 
branched growth processes, c~  This framework relies upon the dynamics of 
competition between neighboring branches in these structures. For DLA, 
one of the authors of this work has proposed a method of determining the uni- 
versal dynamics underlying this competition, a method which allows a priori 
computation of, e.g., the overall fractal dimension of DLA clusters. ~ ~2~ Results 
of this approach are in good agreement with numerical results for DLA. 

In this work, we turn to the implications of this approach for the mul- 
tifractal properties of DLA clusters. Our principal result is that fluctuations 
in the ensemble of possible DLA clusters seem to play a more important 
role than previously expected in determining these multifractal properties. 
In fact, while multifractality is well defined as an ensemble property of 
DLA, there appears to be a quite precise sense in which typical DLA 
clusters are not multifractals at all! 

This result should be placed in the context of a number of studies 
claiming deviations from perfect fractal or multifractal behavior for DLA. 
A number of groups have reported anomalies in the scaling behavior of the 
very weak growth sites in DLA. 1~3~ More recently, Mandelbrot and 
collaborators have proposed that the radius of gyration scaling of large 
DLA clusters may be more complicated than previously believedJ TM 

However, in our case, the scaling anomalies correspond to the most active, 
strongly growing regions of the cluster, and the form of the anomalies can 
be computed. 

1.1. Diffusion-Limited Aggregation 

The Witten-Sander algorithm is based on modeling growth as an 
aggregation of random walkers. Consider a cluster composed of n particles. 
To generate the 0l + 1)-particle cluster, introduce a random walker at a 
great distance from the cluster. This random walker will either escape to 
infinity without encountering the cluster, or else will eventually encounter 
the cluster. In the Witten-Sander algorithm, the particle sticks at the point 
of its first contact with the cluster, thereby forming the (n + 1)-particle 
cluster. The procedure is then iterated to create arbitrarily large clusters 
(the current record in two dimensions, with off-lattice random walks, is in 
the neighborhood of 10 s particles!).~ ~5~ 

Structures generated by this algorithm are highly branched and 
ramified (Fig. 1). Fractal dimensions, defined by the scaling of the average 
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Fig. 1. A typical two-dimensional DLA cluster, grown using off-lattice random walkers. 
There are approximately 35,000 particles in this cluster. (Courtesy of M. Leibig.) 

.DI D r ~  1.71 cluster radius of gyration rg with particle number n, n cz l u , are 
in spatial dimensionality d = 2  and D r ~ 2 . 4 9  in spatial dimensionality 
d =  3. In higher dimensionalities, fractal dimensions are given approximately 
by the phenomenological formula Dr ~ ( d2 + 1 )/(d + 1 ).((6) 

DLA is observed to be a good model for a variety of natural growth 
processes, including electrodeposition, viscous fingering, and solidifica- 
tion.((7) Variants of the model have been proposed to account for colloidal 
aggregation, dielectric breakdown, and the fracture of brittle mediaJ ~8) 

Note that DLA is a stochastic process, due to the underlying 
stochastic nature of the random walks. Properly speaking, for fixed particle 
number n there exists a large ensemble of clusters, each with a certain 
probability of appearing. If we (naively) suppose that each arriving particle 
can attach to any of the preexisting particles, then there are ( n - l ) !  
different "genealogically distinct" (i.e., with respect to particle attachments) 
members of this ensemble. 

This imPlies that quantities such as Df must be defined as ensemble 
averages, since not all possible members of the ensemble will have the same 
Dr. For instance, a possible, though unlikely, ensemble member consists of a 
long, straight chain of particles, which has D r =  1. Unfortunately, researchers 
have rarely paid much attention to this aspect of the problem, and few 
numerical studies even carefully report the method of ensemble averaging 
used. 
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1.2. Mu l t i f rac ta l i ty  

In a particular cluster of n particles, there is a well-defined probability 
that the (1l + 1)th particle will stick to any particular preexisting particle. 
Indexing the particles by i, we write the probabilities of attachment { p~}; 
pg will equal zero for any particle inaccessible to an approaching random 
walker. These quantities are very broadly distributed, being relatively large 
at the tips of clusters, where arriving particles are quite likely to attach, 
and extremely small deep inside the "Oords" of a cluster, where random 
walkers will almost never successfully arrive without having previously 
contacted the cluster. If the distribution of {p~} is multifractal, then we 
expect that 

~" p q = n  (1.1) 
i = l  

where the exponent function a(q), which is defined by this relation, should 
be asymptotically independent of particle number n. ~9"2~ [Note that 
usually multifractality is defined in terms of the scaling of moments of { Pi} 
with respect to the length scale rg and not particle number, defining an 
exponent function r(q), We use a(q) because for our purposes particle 
number is a more convenient basis for defining the exponent function. We 
expect r(q) = Dra(q) .  ] 

These exponent functions have well-known interpretations in terms of 
the distribution of { pi}. We will temporarily follow the literature and use 
r(q) rather than a(q). Suppose that for any particular Pi a corresponding 
~g is defined by p; = (a/rg) ~', where a is the particle diameter and r~, is the 
cluster radius of gyration. Then the total number of particles with pi in a 
range de, N(~)de, defines a quantity .f(e) via N(~)= (a / rg)- r~;  .['(~) is 
independent of r~ for multifractalsJ 2~ The quantityJ'(e) can be obtained by 
Legendre transformation of r(q), 

dr(q) 
~(q) = 

dq 

. f (a(q))  = q~(q) - T(q) 

(1.2) 

The values of f and e at a particular value of q satisfy the tangent condition 

df(e) 
de = q  (1.3) 

By definition, f (e )  is an intrinsically positive quantity. 
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Now we must modify these standard relations to account for the 
stochastic nature of DLA. One approach is to define the exponent function 
a(q) by a simple average of the moments; by analogy with statistical 
mechanics, we term this "annealed" averaging, and the resulting dimen- 
sions a ~j (q) "annealed" dimensions,C21 

p = n .. . .  ~u/i (1.4) 
i 1 

where the brackets ( .-. ) denote, here and elsewhere, averaging over the 
ensemble of DLA clusters. We can similarly define r.,e(q) in terms of the 
scaling with respect to the cluster radius 4 rg by (Z'i'= j PT) = (a/r~F ~'~qL 

One advantage of this procedure is that the corresponding function 
./'(c~) retains a simple interpretation. Suppose that the expectation value of 
the number of particles with probabilites Pi corresponding to the exponent 

is (N(~) ) .  Direct application of Legendre transformation to Eq. (1.4) 
gives (N(~) ) ~ (a/rg) -.r~, where f (~)  obeys Eqs. ( 1.2)-( 1.3 ) and can be 
thereby generated fiom r ~ , ( q ) = D r a , / ( q ) .  One difference from the non- 
stochastic case is that f (~)  can now be negative. Figure 2 shows character- 
istic f (~)  functions for toy models, in the nonstochastic case and for 
stochastic models with annealed averaging. Typically in toy models, 
negative values o f f  appear for ~ sufficiently far from the value of ~, ~ .... 
which corresponds to the maximum value off(oL,,,), which represents the 
most frequently occurring value of the growth probability. In terms of 
r.~j(q) or a.~j(q), negative values o f f  thus correspond to large absolute 
values of q. 

The great drawback of annealed averaging arises if the quantity 
f2(q)=Zip7 is subject to large fluctuations between different ensemble 
members. Suppose that these fluctuations are log-normal, so that the prob- 
ability .~(I2) dg2 that a particular ensemble member has Zg P7 in the range 
[s ~2 + d~2] is 

,.o.,o o 2) d log s (1.5) 

Clearly, the-most likely value of log/2, log ~,  is not equal to log(~2). ~22~ 
This raises the possibility that observation of the scaling function a(q) 
for a typical DLA cluster may lead to a different result than a~(q). 
However, Eq. (1.5) shows that if the fluctuations of s are log-normal, then 

4 Unfortunately, rg is also a stochastic quantity. The ambiguity this introduces is one argu- 
ment for using a(q), defined in terms of n, Ibr which there is no such ambiguity. 
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0 
0 

a) Non-stochastic model 

C1 

[b) Stochastic model 

Fig. 2. Multifractal scaling functions f(a) for (a) a typical nonstochastic system and (b) a 
typical stochastic system, with annealed averaging. Note the appearance of negative values of 
f in the latter case. These functions are obtained by Legendre transformation of r(q) or 
a(q) ~ r(q). 

( l o g O )  = l o g ~ .  This suggests that dimensions a~(q) defined through 
"quenched" averaging, ~-'~1 

( l og  ~ pq/= -~ra(q)logn (1.6) 
i = l  

may be closer to the typical result of an observation on, for instance, a 
numerically generated cluster. Of  course, it is not necessarily the case that 
the fluctuations o f / 2  for DLA are log-normal. However, whatever the 
nature of  these fluctuations, quenched averaging reduces the impact of  rare 
ensemble members, and thus should yield results closer to the behavior of 
typical ensemble members. 
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If a~ (q) gives results characteristic of a typical member of the ensemble, 
then the corresponding f (a )  cannot include negative values of f ,  which can 
only be interpreted as ensemble average quantities. ~23~ Thus, if the fluctua- 
tions of the ensemble are strong enough to lead to negative values o f f  in 
a.~/(q), then we also expect that a.~/(q)~a~(q).  

This does not imply that f <  0 are necessarily unobservable. Suppose 
at some value of q, f(oc(q)) (annealed) is <0.  Then in order to see this 
value o f f ,  one must average over an ensemble of at least N ~ ( r g / a )  Ill 
clusters. This will become difficult as sizes increase, but for small absolute 
values of f ,  negative values o f f  should be observable. 

It is convenient to introduce the "partition sum" ~(q,  or; n), which is 
defined for a specific cluster by 

~e(q, a; n) = n "  ~ p~! (1.7) 
i = l  

The definitions above are equivalent to requiring that the annealed 
dimensions satisfy 

(.~(q, g.~(q); 17)) = 1 (1.8) 

and that the quenched dimensions satisfy 

( log .~(q, a~(q); n))  = 0  (1.9) 

in the limit of large n. By definition, ( ~ ( q ,  ~; lz)) =n~Z(q, n), so that 

( log ~(q ,  a; n))  = a log n + F(q, II) (1.10) 

where F is independent of a. 

1.3. Branched Growth Model 

The branched growth model introduced in ref. 11 is based upon an 
analysis of the dynamics of competition between neighboring branches. 
In standard off-lattice DLA algorithms, any particle that aggregates to a 
cluster has "a unique "parent" particle, to which it attaches. Since no par- 
ticle has two parents, no loops can develop in the structure. The position 
of any particular particle can be uniquely identified by specifying which 
branch it lies upon, on a succession of increasing length scales. 

Consider a branch point, which is any particle that is parent to more 
than one succeeding particle. At a particular point in the development of 
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the cluster, the two (higher numbers are possible, but are both unlikely 
and irrelevant) subbranches coming off of this particle have respectively 
total masses 171, 112 and total growth probabilities Pl ,  P2- These growth 
probabilities represent the total probability that the next particle will stick 
to any constituent of that particular subbranch. We define relative growth 
probabilities and relative masses by 

e l  P l  

Pl + P2 Pb 

17 1 - -  I1 l 

l'l I -31-11 2 11 b 

(1.11) 

where we have also defined total branch mass and growth probability 
nb, Pb, each made up of a contribution from the two subbranches. 

Simple kinematics shows that, neglecting fluctuations in the numbers 
of particles arriving at this branch, we have tl~ 

dY 
d l o g n b = x - -  y (1.12) 

If dx/dlog nb can be expressed as a function of x and y alone, then there 
is a closed dynamics for branch competition as a function of these two 
variables. In ref. 12, it was shown that by averaging over the intrinsic 
stochasticity of the DLA problem, a function g(x, y) can be determined (at 
least in d =  2) such that 

dx 
- -  = g ( x ,  y)  (1.13) 
d log n b 

with g(x, y) a calculable function of x and y alone. By symmetry, g(x, y) = 
-g (1  - x ,  1 - y ) ,  so that there is a fixed point of the dynamics at (x, y ) =  
(1/2, 1/2). For the computed function g(x, y), this is a hyperbolically 
unstable fixed point, with one stable and one unstable direction. (Actually, 
this qualitative feature can also be predicted on general grounds, without 
computation.) The unstable manifold of the fixed point leads to two other 
(stable) fixed points, at (x, y ) = ( 0 ,  0) and (x, y ) =  (1, 1). Thus, subbranch 
pairs, which are born in a tip-splitting process, compete in an unstable 
fashion, so that asymptotically one of the two subbranches possesses vir- 
tually all of the mass and all of the growth probability of the pair. 

Although the dynamics of a branch pair in the x -y  plane is thus deter- 
ministic, the stochasticity of the DLA problem is retained since the original 
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position of a branch pair in this plane, i.e., when n b ~ 1 and a tip-splitting 
event creates the pair, is a random function. In fact, subbranch pairs born 
in most sections of the x-y  plane will be quickly driven to one or the other 
of the stable fixed points, at which one of the two subbranches completely 
dominates the other. In Eqs. (1.12)-(1.13), we see that for general values of 
x, y, the fundamental scale over which x and y will change their values is 
log nb ~ 1, i.e., while the branch as a whole is still of microscopic size. 

However, if the subbranch pair is originally created quite close to the 
central, unstable fixed point, then it will remain in the vicinity of that fixed 
point up to larger values of log nb. Such pairs correspond to the large, 
relatively equal branch pairs seen in a DLA cluster. Thus, the large-scale 
cluster structure is sensitive only to the distribution of birth probability in 
the immediate vicinity of the unstable fixed point. This probability distribu- 
tion will be determined by the microscopic dynamics of tip splitting, which 
does not recognize any special role of the unstable fixed point. Thus we 
expect this probability distribution to be only slowly varying near that 
point; it can be approximated for our purposes by a constant. 

This criterion, and the specific form of g(x, y), defines the random 
branched growth model. Computations with this model are much sim- 
plified by the fact that the branch competition trajectories born quite close 

1 

1/2 Y 

0 i i 

1/2 

x 

Fig. 3. The unstable manifold for the dynamics of branch competition in model Z. The two 
branches move along the indicated diagonal line until either x = 0 or x = 1. This corresponds 
to the complete screening of one or the other of the two sibling branches. From this point 
only the parameter  y reflecting the relative masses of  the two branches changes. 
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to the stable manifold, which correspond to the large-scale structure, will 
be quickly drawn onto the unstable manifold. This manifold can thus be 
parametrized by x and y as functions of log nb, or of nh. Of  course, the 
manifold is symmetric about  the unstable fixed point. It is convenient to 
introduce a parameter  e, which parametrizes the original distance (when 
n~ ~ 1 ) of the branch pair from the stable manifold in the x -y  plane. If this 
distance is e", where v is the eigenvalue along the unstable manifold at the 
unstable fixed point of the dynamics defined by Eqs. (1.12) and (1.13), it 
can be shown that x and y are functions of the combination en b and that 

plays no further role in the dynamics. ~j~ Note also that it was shown in 
ref. 11 that v determines the fractal dimension of the branched structure 
through D r =  1/v. 

For practical purposes, we must thus specify x(enb), y(enb) in order to 
compute with our model. A useful toy model, "model Z," is displayed in 
Fig. 3. In this model, the unstable manifold follows a straight line 
away from the unstable fixed point until it strikes the line x = 0 (or x = 1). 
It then moves vertically into the stable fixed points. The angle of the 
unstable manifold at the fixed point is the one adjustable parameter  for this 
type of trajectory. 

For more realistic purposes, we can use the unstable manifold com- 
puted for DLA in two dimensions in ref. 12.124~ This manifold is displayed 
in Fig. 4. 

y ~/2 

I I 

t/2 

X 

Fig. 4. The unstable manifold for tile dynamics of branch competition for DLA in two 
dimensions, as calculated by the renormalization method in ref. 12. Comparing with model Z, 
we see that screening is a more gradual process in DLA. 
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1.4. Summary of Results 

In ref. II,  it was shown that the annealed dimensions a,/(q) for a 
branched growth model are determined by the simple implicit formula 

dllq ''-t ~ + 1 - dll l f ' - l~(ll;q,  e4(q))=O 
(Y"'"~'OI) [ 1 -- VO1)] "~ ' '  

(1.14) 

where ~l-  enh parametrizes position on the unstable manifold, as described 
in the above discussion. We have also defined the quantity q/(r/; q, a) by 

xq(q)" [ l - x ( q ) ] q  1 (1,15) 
~ P ( q ; q ' a ) - - ~ +  [ 1 Y('7)]" 

This quantity will appear frequently in our results. For model Z or for the com- 
puted DLA trajectories, Eq. (1.14) leads for q > 0 to an annealed multifractal 
spectrum with the expected properties, such as negative values off(c~) for 
large values of q. For  q < 0, annealed multifractal dimensions are typically 
not well defined, due to a divergence of the integral in Eq. (1.14). 

In this work, we study the structure of (log'JoY) for the random 
branched growth model, in order to determine the quenched multifractal 
dimensions for these models. We develop a diagrammatic perturbation 
expansion for this quantity, and we show how sets of terms in this expan- 
sion can be resummed to all orders. The form of the resulting expression 
is 

( log ~(q,  a, n) ) = (  I d,l ,f'-'~b(,l; Cl, O) ) Fo(q, a) log ,, 

+ Fl(q, a)( 1 -- 17 -J('/~) + ... (1.16) 

where the exponent 3(q) governing the finite-size corrections is positive 
and calculable. Because ( log ~ ' )  = a log n + F(q, n), the power-law terms 
should be independent of a; we retain an Ersat= dependence on ~ in 
Eq. (1.16) because this independence is difficult to see directly within our 
perturbative method. In the limit n --* o~, the power-law and constant terms 
can be disregarded; thus it appears that the criterion ~ dr/~f'- l~b(pT; q, a) = 0 
is sufficient to determine a,(q).  Since this is the same criterion as that for 
the annealed dimensions a.~(q), this implies that a~,(q)=a.~,(q). This 
result is somewhat surprising, and also undermines the interpretation of 
a_,,(q) as a property of a typical cluster, since we expect o~/(q) to include 
regions of negative f(~). 

This paradox is resolved by a further feature of this result. It concerns 
the order of the limits q ~ c~, n ~ oz. Negative values o f f  appear for large 
values of q; however, limq . . . .  A(q) = 0. Thus, for large q, the power-law 
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terms in Eq. (1.16) do contribute logarithms to the result, provided that n 
is not too large. Thus for moderate values of n, a different result is obtained 
for ~ ( q ) ,  which proves not to include negative values o f f  At large n, one 
will eventually cross over to the asymptotic regime in which ~ ( q t  = 
a~j(q), but this value of 17, which we term n,,, grows very quickly with q, 
as n,.(q)~exp(aebq), with a and b positive constants, as shown below 
explicitly in Section 4 for a specific model, model Z, Thus for practically 
accessible values of ii, we expect never to see negative values o f f  

Of course, this resolution also implies that any typical cluster of finite 
size n should probably not be viewed as a true multifractal, as its exponent 
function a:~(q) actually represents different scaling behaviors above and 
below the value of q for which 17=n,.(q). One conclusion of our study 
is thus that multifractality should be properly viewed as an ensemble 
property of DLA, and not a property of individual DLA clusters. 

This paper comprises five sections and five appendices. In Section 2, 
we develop the perturbative expansion of ( log  Lr) .  In Section 3, we show 
how families of terms within this expansion can be resummed to all orders. 
In Section 4, we discuss the implications of these results for the multifrac- 
tality of DLA clusters, and we compare our analytical results with numeri- 
cal results for random branched growth. In Section 5, we conclude and 
summarize. In Appendix A, we show how to perform sums that play the 
role of"propagators"  in our perturbative expansion. [n Appendix B, we list 
perturbation theory terms, with their diagrammatic expressions, up to 
fourth order. In Appendix C, we list some mathematical identities that are 
useful in the resummation of Section 3. In Appendix D we show a simpler 
method of obtaining some of the terms in the final expression for ( log  i f ) .  
Finally, in Appendix E, we show how the expansion of Section 2 can be 
recast as a perturbation theory in q -  1. 

2. PERTURBATIVE EXPANSION FOR ( l o g  ~e )  

Formally, we can write 

( log ~ o-; n) )  ~' ( - -1)  N-I = ( ( f l ~ "  - -  1 ) N ) (2.1) 
N=J N 

so that our problem is one of computing expectation values of powers of 
~ 1. We know that 

~ (q ,  ~; 11) = i< P~ = ( l /n)" 
i = 1  i = 1  

where we recall that the index i labels the particles. 

(2.2) 
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I 
I 
I 

A 
ne, Pe 

na, Pa 

Fig. 5. Two sibling elementary subbranches. The last node in the branching cluster is 
indexed by J, has a total of nj descendants, and has a total growth probability of p~. The 
stochastic variable controlling the branching at this node is e s. The stronger descendant sub- 
branch has a number of particles n,.= ( 1 -  .v(e-'n.,))It, and a total growth probability p,. = 
( 1 -.x'(ejn~)) p~. 

In our model, the only sites which are allowed to grow are at the 
endpoints of the branching process. Thus we use Eq. (2.2), substituting a 
sum over these "elementary" subbranches for the sum over particles i in 
(2.2). Consider a particular elementary subbranch of the cluster, of total 
growth probability p,, and total mass n,, (Fig. 5). This subbranch branches 
off from its sibling at a particular node, indexed by J; the total number of 
particles in the elementary subbranch and in its sibling taken together is ns. 
If the elementary subbranch is the weaker (stronger) of the two sub- 
branches, then it has a proportion X(gsn j )  (or 1--X(C, jnj)) of the total 
growth probability of the two subbranches taken together, and a propor- 
tion y ( E j l l j )  ( o r  1 -  y(l?, j l l j ))  of the total mass of the two subbranches 
taken together. Here es is the random variable specifying the original state 
for the branch point indexed by J when the total number of descendants 
of that branch point was nj = 1. We will sometimes refer to the path that 
leads through the stronger of the two subbranches as the "main branch;" 
the weaker subbranch corresponds to a "side branching." 

Since ~ can be expressed in such a way that x and y always appear 
together, it is convenient to define quantities f_+(O = e n )  by 

xq(q) 
f _ (q )  - S(q) 

(1 - xOl  ) ) '~ 
f + ( q )  =- (I - y(r/)) '~ 

(2.3) 
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The contribution of our particular subbranch to ~ '  can be written as 

p, ,  J 

(.,,/JIV- [I f,,,(~11;) 
j = l  

(2.4) 

where l t j=  +_, depending on whether the stronger or weaker branch is 
taken at the j t h  node. The index j indexes the nodes between the root of 
the cluster, j =  1, and the elementary subbranch, for which we have taken 
j =  J. Note that n~ =-n, the total number  of particles in the cluster. Note 
also that the index j measures position upon a particular path fi'om the 
root to an elementary subbranch, so its meaning depends upon the exact 
sequence of {~lj} chosen. Comparing with Eq. (2.2), we see that in Eq. (2.4) 
we are introducing a slightly different cutoff procedure than that used in 
Eq. (2.2), where n e = 1. 

Averaging the quantity appearing on the right-hand side in Eq. (2.4) 
is difficult because nj is actually a function of all ek with k <j, since either 
nj = y(ej_ inj_ , )n j_  ~, if at the j th  node we take the weaker of the two sub- 
branches originating at that node, or else n j =  [ ( 1 -  y(e i_ ,n j_ 1)] n j_ ~, if 
we take the stronger of the two subbranches. Thus the individual terms in 
the product appearing in Eq. (2.4) cannot be averaged independently of 
one another. 

Nevertheless, it is instructive to investigate how a single one of these 
terms averages. Consider f_(~/~j). The average of this over the random 
variable ej is given by 

(f_(ejnj))~j= dejp(ej)f_(tjnj) (2.5) 

where ( . )~ ,  denotes averaging over ej, and p(ej) is the probability distribu- 
tion for er  In the introduction, we stated that the initial distance in the x - y  
plane from the unstable manifold is proportional  to e v. In addition, we 
stated that the probability distribution with respect to the distance measure 
de" should be constant close to the unstable manifold. Since de"cc e"-1de, 
we see that 

!im  l ,o /26/ 

where Po is a constant. (The reader may consult ref. 11 for a more detailed 
discussion of this point.) Now suppose that nj ~ 1. The quantities x(q), 
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y (q )  - ,  0 for r/> 1 (see Fig. 3 and 4), and for physical values of a, we thus 
expect f (1/)--, 0 for r/> 1. Thus we have 

f('" ~ Po f(" ,.__ ,f_ (,1) _ P_~, ( ( f _ ) )  (2.7) de/p(a/) J (cjnfl.~-~. " d~ q n~ 
) .I ) 

where we have defined a normalized expectation value (( ... )) by 

( ( f (q)))  - d,? q" 'J('l) (2.8) 
) 

This expectation value does not depend on n/, nor on anything else except 
the form of the unstable manifold. The corrections to Eq. (2.7) are of 
higher order in n~7 ~. Ignoring these corrections, we write 

( ( f  (aJn*))) \ n ) ' /  ( ( f  )) (2.9) 

where the remaining true expectation value <nT") depends only upon ran- 
dom variables ek with k <j.  

The averaging o f f +  is performed rather differently, because lim,~_., 
f+(~/) = 1. Thus 

I[ = 1 + deiple.j)(f+(etn~) - 1 ) 
) 

m 1 + n). ( ( ( f+  - 1))) 

- 1 + ~ )  ( (g+) )  (2.10) 
n] 

where we have used ~o de p ( e ) =  1, and have introduced 

g + (r/) - f +  01) - 1 (2.11) 

It is now natural to expand ( log ~ ' )  perturbatively in f _  and g+.  
Formally, we can associate a dummy parameter c~ to each factor of)"_ or g +, 
expand order by order in & and set c~ = 1 at the end of the computation. 
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Stronger sub-branch 

Fig. 6. The subbranch found at the bottom of tile main branch, defined by taking at every 
node the stronger of the two paths down the branch. The indexj indexes the nodes along this 
main branch. 

2.1. Zeroth Order in 6 

At zeroth order in 6, only one elementary subbranch in the cluster 
contributes, that in the stronger subbranch at each node, starting at the 

q ! o- root (Fig. 6). The contribution p,,/(7,,/n) from this subbranch is given by 

J J 

P~" = I-[ f+(gjnj)= l-[ (I +g+(gjnj)) (2.12) 
(17e/n)~r j = l  j = l  

where the index j now denotes nodes along this main branch of the cluster. 
To zeroth order in g+ ,  this is simply p~/(n~,/n)a= 1, so that ~ -  1 = 0(6), 
and to zeroth order in &, ( log  ~ )  = O. 

2.2. First Order in 6 

To first order in 6, we can approximate 

( log ~ )  ~ ( ~ -  1) (2.13) 

because the other terms in the expansion of the logarithm are at least of 
0(62) .  The terms with only one factor o f f _  represent elementary branches 
removed at some point from the main branch by the choice of the weaker 
branch at only one node. If there are J nodes in the main branch, there are 
J such "first-order" side branches. Since we are interested in terms of first 
order in 6 only, for these terms the factors o f f+  appearing in the partition 
function can be replaced by 1, because f +  = 1 + g +  = 1 + 0(6). Thus the 
term of 0(6) that is proportional to f _  is 

( l o g  ~.L~e} 1, ~ f_  = ~ (( f _  )) (2.14) 

where the subscript on the left-hand side represents terms of first order in 
6 that are also proportional to ( ( f _ ) ) .  The indexj  represents nodes on the 
main branch of the cluster, starting at the seed (or r o o t ) j =  1. 
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g. terms f_ terms 

Fig. 7, The terms of first order in ~ containing one factor o f f_  arise from the elementary 
subbranches at the end of the "first-order" side branches off of the main branch. The terms 
of first order in g containing one factor of g+ arise from corrections to the partition function 
contribution coming from the elementary subbranch at the end of the main branch. 

There are also terms of first order in ~ that are proportional to 
(( g + )). These terms include no factors o f f _ ,  and refer to the elementary 
subbranch at the end of the main branch. The actual partition sum con- 
tribution from this subbranch is represented as a product of factors o f f §  
one at each node. To first order in 6, one chooses one of these nodes to 
contribute a factor of g+ and all others contribute a factor of l. Thus 

(l~ ~ (PI~:)((g+)) (2.15) 
j>~ l  

where again the index j refers to nodes on the main branch of the cluster. 
Although the term oz g+ is thus identical in form to that oc f _ ,  

Eq  (2.14), the origin of the two terms is quite different. Equation (2.14) 
gives the 0(6) partition sum contribution of all of the elementary sub- 
branches along the "main line" of the side branches of the main branch, 
while Eq. (2.15) gives the 0(6) contribution from the elementary subbranch 
at the end of the main branch itself (Fig. 7). 

We can also represent these terms graphically. We represent a g+ 
"vertex" by an open circle, and an f _  vertex by a solid circle. Their sum 

~ k - f _  + g +  (2.16) 

[from Eq. (1.15)] is indicated by two circles connected by a short vertical 
line. A set of nodes on a branch over which n f  v (and later, more com- 
plicated functions of n j) is summed is indicated by a solid horizontal line. 
The left side of a diagram indicates the root, and the right-hand side 

S22 g5 5-6-13 
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A + O = W m 

Fig. 8. Diagrams at 0(6) in perturbation theory. The solid circle indicates an f _  vertex and 
the open circle indicates a g+ vertex. A solid and an open circle connected by a short vertical 
line indicate a vertex of ~, = f _  + g § A horizontal segment indicates a branch over which n - "  
is summed, possibly with a logarithmic factor in n. 

represents structure successively further down the branching tree. Thus the 
( log L~) ~ terms that we have written in Eqs. (2.14)-(2.15) are indicated by 
the diagrams in Fig. 8. 

The perturbation expansion we are developing is analogous to field- 
theoretic perturbation series, with the factors o f f _  and g + playing the role 
of vertices, and the sums of n - "  playing the role of propagators. We shall 
see below that at higher order, both of these objects become more com- 
plicated. One difference from field theory is that topologically, the diagrams 
always have the shape of branched trees, with no loops in the structure. 

To evaluate these terms, we must evaluate (Zjnf~),  where the sum 
is along the nodes of the main branch. We shall evaluate this sum by a 
somewhat roundabout  path. Consider the quantity log(n/he), where n~ is 
the number of particles in the elementary branch at the end of the main 
branch. By the definition of the y parameters [Eq. (1.10)], we can write the 
identity 

J 

log(n/n~) = - l o g  I-I (1 - y(ejnj)) (2.17) 
j = l  

where the index j ranges over all of the nodes on the main branch, of which 
J is the last. Taking the expectation value of the right-hand side, and using 
the methods we have developed above for computing these expectation 
values, we see [referring to Eqs. (2.7)-(2.8)] that 

• ,218, 
j = l  

so that 

j = l  

with 2 = - • log( 1 - y)))  - 1 and a o =Iog  n~/((log( 1 -- y) b .  The parameter 
2 is thus a function only of the unstable manifold in the x-y  plane. This is 
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not the case with a0, which is cutoff dependent, and is thus sensitive to 
small-scale details of the theory. We shall see below that such nonuniversal 
constants do not affect results for multifractal dimensions. 

Thus our final result is that 

( log  ~ )  l = ( ( f -  + g+ ))(2 log 17 + ao) = ((~b)) (2 log n + a0) (2.20) 

We should remark that the nonuniversal constant Po and the exponent v 
no longer appear explicitly in our formulas, although they do appear in 
intermediate steps in this computational method, and v appears in the 
definition of the average (( --- )). These quantities do not appear explicitly 
in final results at any order in J. 

In Eqs. (1.15) and (2.16), we defined the quantity f _ + f + - I  = 
f _  + g + - 0 ,  and stated that the criterion ( ( 0 ) ) = 0  determined the 
annealed multifractal dimensions a.~,(q). (Recall that ~, like f _  and g+ ,  
is a function of q and a.) Thus, in the limit n ~  oe, our O(J) result 
for the quenched multiffactal dimensions, determined by the criterion 
( log ~ )  ~ -- 0, is identical to our result for the annealed multifractal dimen- 
sions, so that a ~(q) = a.~,(q) + O(J2). 

2.3. Second Order in 6 

Although similar in spirit to the computation of ( log  ~ )  1, the com- 
putation of ( log  5 e) 2 introduces some new complications. Let us start by 
considering the term arising from ( ~  - 1 ) ~ o~ : This term arises from the - . .  g + "  . . 

elementary subbranch at the end of the mare branch; m this case we are 
computing the O(J 2) term in its contribution to the partition sum. 

Specifically, we must compute 

(~ o ~ g ~ = ( ~  ~ g+(eknk) g+(ejn.i)) (2.21) 
k>~l j > k  

Graphically, this term is represented by a horizontal bar interrupted by 
two open circles, representing the two factors of g§  one downstream from 
the other on the main branch. Note the presence of two horizontal segments, 
corresponding to the two sums in Eq. (2.21) (Fig. 9). 

�9 �9 
Fig. 9. A diagram a t  O ( ~  2) that is ocg%. This diagram comes from ( ~ - 1 ) .  Tile two 
horizontal bars indicate the two propagator  sums. Note that including a factor of  g+ does not  
lead one onto a weaker side branch. 
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In Eq. (2.21), we start by averaging over e j, thereby obtaining 

( ~ Z g+(e, nk, g+(e/~j))=( Z ~ g+(eknk)P~,j)((g+)) (2.22) 
k I j > k  k 1 j > k  

Using the result from Eq. (2.19) for ~ j ~  nj -v, we see that 

(~>kP'~.):()'lognk+,+ao) 
J 

= ().[log n, + log(1 --y(eknk))] + a0) (2.23) 

where n, +t refers to the number of particles in the stronger branch at the 
kth node on the main branch. Then, by summing overj  and averaging over 
ek, we obtain 

( ~  Po {2[((g+))  logn,  
k I 

log(1-  y)) ) ]  +ao((g+))}  / ( (g+))  + ( ( g +  (2.24) 

In order to perform the final sum, we must compute (Zk  log nk/n~.). 
This can be done by an iterative procedure based upon our result above for 
~_,jn}-", Eq. (2.19) (details are given in Appendix A.) The result is 

( ~  po logn j \  
./>/, n)' / =  (22.2 log2 n + 22. i log n + 22. o) (2.25) 

where n = nl is again the total number of particles in the entire cluster, and 
22.0 is a nonuniversal constant. By contrast, 2,_.2 and 22. ] are functions 
only of the form of the unstable manifold. The generalization of Eq. (2.25) 
is straightforward, 

P0 log N- l nj / N 
Z n; = Z 2N, MIog Mn (2.26) 

j~> 1 / W = O  

In this notation, all of the {2N.0} are nonuniversal: the first of these 
is 2Lo=ao . Furthermore, 2--2~.~. In Appendix A, an iterative method 
which can be used to compute arbitrary numbers of these coefficients 
(except, of course, for the nonuniversal ones) is demonstrated. For the 
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Fig. 10. A diagram at 0(62) that is oz_f2. This diagram comes from ( . ~ - 1 ) .  The two 
horizontal bars indicate the two propagator sums. Tile vertical bar indicates that the right 
most f_ vertex is off of the main branch. Taking a factor off_ in a diagram arising from 
(d '  - 1 ) always moves one onto a weaker side branch. 

purposes of this work, we need only 2 =  ((log(1 _ y ) ) ) - l ,  22.2=2/2 and 
22. l, which is given by 

(( l~ Y))) - 2 '  (2.27) 
22. I - 2((log(1 _--y--~2 

Applying these results to the computat ion of the right-hand side of 
Eq. (2.24), we obtain 

( ~ - -  1)2" ~g~_ =(2~ . . . . . . .  ~ log 2 n + 2 ~  ] log n + 2~ o) 2( (g+) )  2 

+ (2 log n + ao) 2(( g + l o g ( 1 - - y ) ) ) ( ( g + ) )  

+ (2 log n + a o) ao( ( g + >) 2 (2.28) 

Another term, ( ~ - 1 ) 2. ~ f ' - ,  corresponds to partition sum contribu- 
tions from elementary subbranches with two weak ancestor nodes. In this 
case, since we wish to consider only terms of O(d2), we take no factors of 
g+ whatsoever. The diagrammatic representation of this term is shown in 
Fig. 10. A short vertical bar is added before the second horizontal line, to 
indicate that one of the summations of 17-" takes place off of the main 
branch. The calculation is entirely analogous to that leading to Eq. (2.28), 
and the result is 

(o~__ l>2,~fz_=(22.21og2n+22.1 log n +22. o ) 2 ( ( f _  >>2 

+ (2 log n + ao) 2 ( ( f _  log y )) <( f _  )) 

+ (2 log 17 + ao) ao( ( f_  ))2 (2.29) 

The mixed terms (Fig. 11), which contain one factor of g+ and one 
factor o f f _  (in either order), have the same structure, 

(J% t~e- 1)z ' ,~f_.g+ =(22.  2 log2n+22, t log n + 22,o) 2 2 ( ( f _ ) ) ( ( g + ) )  

+ (2 log n + ao) 2[ ( ( f _  log y))  (( g+ )) 

+ ( ( g +  log(1 -- y)>)<(f_  >> ] 

+ (2 log n + a o) 2ao(( f _  )) (( g+ )) (2.30) 
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Fig, I 1. 

o - -  + 
Mixed terms ~J'_ .g+ arising from (~2-1).  These diagrams are O(d-'). 

There are also contributions to ( log f f  ) 2 from the - ( 1/2) ( ( f f  - 1 ) 2 ) 
term in the expansion of the logarithm. These reflect cross-products 
between two elementary subbranches, with the partition sum contribution 
of each being taken to O(d). The diagrams appearing are shown in Fig. 12. 
Note that symmetry factors appear multiplying some of the diagrams. Also, 
new vertices of the type ((g~_)), ((f2_))  appear, arising from cases in 
which g+ or f _  factors are taken at the same vertices in the two different 
"replicas" of i f - 1 .  Such vertices are indicated by adjoining circles, dis- 
placed perpendicularly. The contribution oc g+ is 

- �89 ( ~  - I ) 2 )  2. ~ g~ = - ( 2 2 . 2  l o g  2 n + 22. I log II + 22, o) 2 ( (  g +  ) )2  

- ( ) .  log n + a  o) 2 ( (g+  log(1 - y ) ) ) ( ( g + ) )  

- (2  log II + ao) a o ( (  g +  ))  2 

- �89 l o g  n +ao)((g+ )) ( 2 . 3 1 )  

while that Gc f ~  is 

l ( ( j . ~ r  _ _  1)2)2 .... I'~ = --(22,2 Iog 2 11 +22. I log n + 22. o) 2 ( ( f _  )) 2 

- (2  log i1 + a o) 2 ( ( f _  log( 1 - - y ) ) )  ( ( f _ ) )  

- (2  l o g  17 + a o) ao((f_ ))2 

- �89 log n + ao) ( ( f  2 )) (2.32) 

Note that the vertex ( ( f _  log(1 - y ) ) )  appears in this term, rather than 
( ( f  log y)) ,  as in Eq. (2.29). Finally, the mixed term is 

- � 8 9  1)2)2 ' ~_f .g+ = -(22.2 log 2n+'~2, I log 17+22.0) 

x 2 2 (( f _ )) (( g + )) 

- (2 log n +ao) [2 ( (  f _  log(1--y) ) )  ( (g  +)) 

+ 2 ( ( f _ ) ) ( ( g +  l o g ( 1 - y ) ) )  ] 

- (2  l o g  17 + a o) 2ao (( f _  )) (( g + )) 

-- (2 log II + ao)(( f _  .g+ )) (2.33) 
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- � 8 9  = _ - + 2  o o 

+ 2  r 0 + 2  - - 4 3  --. 

+ - - - I  § + 8 )  

Fig. 12. All terms of 0(6 2) arising from - (  1 / 2 ) ( ( ~ - 1 ) 2 > .  Note the symmetry factors. 

Collecting terms from Eqs. (2.28)-(2.33), we finally obtain 

y 1 , (log~)2=[2<<t#))((f_log(-~-~_y)))--~<<r 
(2.34) 

where, again, r = f _  + g +. Note that the log 2n term has cancelled out, as 
have the nonuniversal contributions to the log n term [Gc ao21ogn in 
Eqs. (2,28)-(2.33)]. 

2.4. Structure of 6 Expansion 

In Appendix B, we continue this expansion, deriving ( log ~ ) 3  and 
( log ~ ) 4 .  In general, we expect that the O(~ N) term in the expansion will 
have the form 

N 
( 1 o g ~ ) N =  ~ flN. MlogMn (2.35) 

M=0 

where the coefficients flN, U will include "universal" [independent of the 
{),N.O} of Eq. (2.26)] and nonuniversal terms. It is clear from the structure 
of the expansion that the leading coefficients fiN, N do not contain any non- 
universal terms, as the leading coefficient 2N. N in Eq. (2.26) for any sum 
Z j l o g N - I  n/n~ is universal [see Appendix A; Eq. (A.8)]. We also note 
that with the exception of the 0(6)  term, we have fiN.,V = 0 to fourth order. 
Below we will show that this is true to all orders. The situation is sum- 
marized in Table I, which shows, as a function of order in 6 and power of 
log n, the terms appearing in this series. 

Unfortunately, this series does not allow us to determine directly the 
quenched dimensions a~(q). Recall that these are determined by the 
requirement that ( log  ~ ) ~  0 in the limit n--* ov (more precisely, that it 
be bounded above and below by quantities which go to neither + or; see 
ref. 20 for a discussion). Since each individual term logMn diverges as 
n--* or, and since there is no obvious relation between the coeff• of 
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different powers of logn in the series for ( log  ~ ) ,  we cannot extract 
unique results for cr:,(q) from this series. 

For this reason, we turn in Section 3 to the resummation to all orders 
in 6 of the leading and subleading divergent terms in this series. We shall 
see that the annoying higher order logarithms can be safely resummed to 
decaying power laws, allowing unambiguous determination of tr_.,(q) in the 
limit 17 ~ co. 

2.5. Resummation of "One-Propagator"  Series 

Before turning to the general resummation of the series, we would like 
to remark on a simpler resummation, which is analogous to loop expan- 
sions in ordinary field theory. Consider all terms in the series with only one 
summation over n - L  These terms can be of any order in 3, as vertices can 
be multiplied together at the same node, as in the 0(6  2 ) terms above. The 
associated diagrams are shown in Fig. 13. This "one-propagator"  result can 
be easily derived: 

(__1)N_ 1 
( log  ~ ) t r  = N ( (~ u ) ) (2  log n + a~ (2.36) 

N = I  

We have used the subscript lp to indicate that this is the one-propagator  
term. Taking the sum inside the brackets (( .. .  )) yields 

( log  5 )  It, = ((log( 1 + ~k)))(2 log n + ao) (2.37) 

This result has two appealing propert ies-- in the first place, it leads to 
a result for cry(q) in which no negative values o f f  appear. It is thus an 
appealing approximate formula for the dimensions of a "typical" cluster. 
Also, as we shall see in Section 4, the a~(q) resulting from setting ( log  ~ )  i~, = 
0 is quite close to numerical results in the case of our toy model, model Z. 

However, if one tries to extend this approach by resumming the "two- 
propagator"  terms and so forth, one encounters the same problem as with 

' t + '  | 
+ �9 - ~ + ~ - -  

-- - - - - ~  + . . . .  

Fig. 13. All diagrams containing only one propagator in the full expression lbr ( log~) .  
Note that the joined vertices indicate factors off_ or g+ averaged together, e.g. ( f_g+))  
for the last diagram. The sum of these diagrams gives the "one-propagator" approximation 
( log ~ )  lp. 
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the 6-series, that higher orders in log n are also generated. Thus this expan- 
sion technique suffers from the same difficulty as the 6 expansion, that 
unique values of a,_,,(q) are impossible to obtain without resummation. 

3. R E S U M M A T I O N  OF THE 6-SERIES 

We have shown that the form of the 6-series is 

N 

( l o g ~ ) =  ~" 6 U ( l o g ~ ) u  = ~ ~' flu, MlogMn (3.1) 
N = I  N =  I / 1 4 = 0  

where each fiN. M is of o(6N). Our procedure is now to resum this series 
by summing first the most-divergent terms M =  N at all orders in 6, then 
the second-most-divergent terms M = N - 1 ,  and so on. Introducing yet 
another subscript, l (leading), to indicate the most divergent sum, and the 
subscript sl (subleading), to indicate the next-most-divergent sum, we have 

and 

( l o g ~ ) / =  ~ flN, NlogNn (3.2) 
N = I  

( log  ;~").,./= ~ fiN, N - -  I log N- | n (3.3) 
N = 2  

In principle, we could continue with sub-subleading terms, but in 
practice we will restrict ourselves to computing only these two terms. Note 
that our resummation procedure corresponds to summing down the diagonals 
of Table I. 

3.1. S u m m a t i o n  of Leading Terms 

The leading logarithm at each order in 6 will be universal, as pointed 
out in Section 2. Let us start by computing ( f f  - 1 )/.  In order to compute 
this, we will need the result from Appendix A: 2N. U = 2/N~ where the reader 
might recall the definition of 2N, M: 

( )N Po log N- 1 nj , logAt 
,1)' = M=oE M 17 (3.4) 

Here the sum is along a horizontal bar of some diagram. Since we are 
taking the leading order in log n in the entire diagram, we wish to take the 
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o o o $ ~ 

Fig. 14. A typical contribution to ( - ~ -  1). At leading order, the leading logarithm in each 
propagator is taken. Each vertical segment indicates a move to a side branch. 

leading order in each propagator. No factors of 1 - y  or y will appear in 
the leading order, since each such factor would take the place of a factor 
of log n. Also, we take the leading logarithm of each term of the form of 
Eq. (3.4), which will have as a coefficient one of the {2U. jV}- 

Consider a diagram contributing to ( ~  - 1 ) /consis t ing of n~ factors 
o f f _  and n2 factors of g+.  There will be a total of N =  nl +n2 horizontal 
bars, or propagator sums, in such a diagram (see Fig. 14). If we call the 
contribution of this diagram ~, then 

A N 
c.g = ~ .  I ( ( f_)) , , ,  ((g+)),,2 logNn (3.5) 

because 2N/N!  = FIN,= l 2N, ,v,. 
Since any vertex can be taken to be either f _  or g+ without changing 

other features of the term, we immediately obtain 

( f f  - 1 ) / =  ((~))NlogNn = exp(2((tp)) log n ) -  1 
N = I  

(3.6) 

Now let us turn to - 1 / 2 ( ( ~ - 1 ) 2 ) / f r o m  the expansion of ( log  ~ )  
in Eq. (2.1). For the sake of argument, let us consider terms in which each 
factor of ~ - 1  has at least one factor o f f _ .  We will say that the first 
factor of ~ - 1  has l, factors of g+ before the first appearance o f f _ ,  and 
m~ factors of either f _  or g+ after the first appearance o f f .  The second 
factor of ~ -  1 has l_, factors of g+ before the first factor o f f _ ,  and m2 
factors of either f _  or g+ after the first factor o f f _  (see Fig. 15). 

Now we average these two factors together. Note that two factors of 
f _  appearing in the main line cannot appear at the same node; were they 
to be averaged together, the diagram overall would lose one propagator, 
and thus one power of log 17, without losing a factor of ~, which counts the 
total number of factors o f f _  and g+.  Such diagrams first contribute at 
subleading order. Similarly, two factors of g+ cannot appear at the same 
node. 

Suppose that the factor o f f _  coming from the second ~ -  1 is further 
down the main line than that coming from the first ~ -  1. Then in any 
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m o  �9 
\ 

x - - o  0 �9 

1, 
Y 

w m l  

! I l I l  
\ ~ 2  J 

Fig. 15. A typical contribution to ( ( ~ - 1 ) 2 ) ,  arising from a product of a diagram with /i 
factors of g + upstream from the first factor off_,  with m t factors of ~b off of the main branch, 
with a diagram with 12 factors of g + upstream from the first factor off_ ,  with m_, factors of 

off of the main branch. For simplicity, we have drawn all factors of ~, along the same 
branch; terms involving more than one factor o f f _  will properly have further vertical 
segments. (Note that we use "upstream" to mean closer to the root, at the left, not closer to 
the elementary subbranches.) 

d i a g r a m  resu l t ing  f rom this  p roduc t ,  there  will be  a n u m b e r  I~</2 of  g +  
vert ices be tween  the two f _  vertices, a n d  L - l  to the left ( fur ther  up  the 
m a i n  b r a n c h )  of  the  first f _  vertex,  where  L = l~ + 12 (see Fig. 16). N o w  we 
m u s t  cons ide r  the vert ices off the  m a i n  line. T h e  s t ruc tu re  of  the d i a g r a m  
does n o t  d e p e n d  on  wh e t h e r  these are f _  or  g +  vertices,  since we average  
n o  factors of  l o g ( y )  or  log(1 - y )  wi th  these vert ices at  l ead ing  order.  T h u s  
we will s u m  toge the r  these two types  of  of f -main  l ine vertices,  and  a t t ach  
m~ vert ices  ~b to the  first factor  o f f _ ,  a n d / / I  2 such  vert ices to the  second  

factor  o f f .  

\ , j  

m 1 

m 2 

Fig. 16. One term arising from the product indicated in Fig. 15. Defining L = 1~ + 1,, we have 
L -  1/> I~ factors of g+ upstream of the first factor off_ ,  followed by 1 ~< 1, factors of g +, and 
then the second factor off_ .  The diagram includes ml factors of ~b coming off of the first f_  
vertex and mz factors of q; coming off of the second f_  vertex. 
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In order to compute the diagram, we must keep track of the number 
of factors of log 17 appearing for each propagator; at leading order we take 
only the propagator terms multiplying one of elements of the set {2N. N}. 
The total number of propagators to the right (on the main line) of the 
"upstream" factor of . /_  is m2 + l +  1, while the total number downstream 
of the first factor of g + to the left of this f _  vertex is m~ + m2 + l + 2. (Note 
that we use "upstream" to mean closer to the root, not closer to the 
elementary subbranches.) A simple computation, keeping careful track of 
these factors, gives the contribution #'; of this particular diagram as 

1 1 ( M + I + I ) !  
(o l2+I+ 1)! ml!  ( M + L  + 2 ) !  

x ( ( f_ ) )Z  ( (g+))L ((~b))M (21ogn)M+L+Z (3.7) 

where M =  m~ + m2 and we defined above L = l~ + 12. 
Of course, the two original factors of ~ - 1 can be multiplied together 

in various distinguishable ways to make this diagram, corresponding to the 
different origins of the L - l  factors of g+ on the left-hand side of the 
diagram. Since / 1 of these come from the first factor of f f  - 1, and L - l -  / t 
come from the second factor of ~ - 1 ,  the total number of relative 
permutations N e is 

--- (3.8) 
( L - l - I i ) !  ll! 

Finally, to obtain the expectation value of the product of the factor 
~ -  1 containing/~ factors of g+ in the main line and m~ factors of ~ off 
the main line with the other factor of ~ -  1, which contains 12 factors of 
g+ on the main line and m~ factors of qJ off the main line, we must sum 
over l~<12 and permute the choice of whose main line factor of f _  is 
upstream (see Fig. 16). If we are interested in contributions to - ( 1 / 2 )  
( ( ~ - 1 )  2) with at least two factors of ( ( f _ ) ) ,  we must then sum over 
mj,  1712, 1~, and 12. This yields 

1 
- -2  ( (fl.~e 1)2)/. z <<f_ >>: 

---i i i i l  
m[=O m2=O /t=O /2=0 / = 0  

x Ii ( m 2 + l + l ) ! m l ! ( M + L + 2 ) !  

x (~ f _  ))-" ~ g + )) L ~ 0) )  M (2 log n) M+L§ (3.9) 
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In addition, the term including only one factor o f f _  is easily written as 

1 
- -  ) - ) 1 .  ~ <<.r- >> 2 ( ( ~ _  1 

m l = 0  / 1 = 0  /2=1 / = 0  

x(LITI)  1 l (m~+l)! 
m~! l! (m~ + L +  1)! 

x ( ( f _ ) ) ( ( g + ) ) L  ((~b))"' (21ogn) ''''+L+' 

while that with no factors o f f _  at all is 

1 
- ~  ( ( ~ -  1 ) 2 ) / .  ~ <<.r_ >> o 

(3.10) 

= - 2  1, ~ .  T ( (g+) )  L (2 l~ n)L (3.11) 
/ 1 = 1  /2=1  

The sums are tedious but elementary. In Appendix C we illustrate the per- 
formance of the types of sums appearing in this work. Performing the sums 
and adding Eqs. (3.9)-(3.11), we obtain the quite simple result, 

-~ ( (oAe-  1)2)t= - �89 log n ) -  1 ]2 = - �89 ( ~Ae- 1),]  2 (3.12) 

Remarkably, at leading order, the process of taking the expectation 
value of ~ -  1 commutes with taking the square of this quantity. We will 
now address the origin of this identity. 

Let us first consider a simpler case, with only one factor of ~ -  1. The 
leading order ~ of a diagram with l factors of g+ on the main line, 
followed by one factor o f f _ ,  followed by m factors of ~, can be written as 

~ = ~U(2((f_))  log n)(2((g+))  log n)/(2((~b)) log n)"' (3.13) 

where the factor ~,V'= 1 / ( r e + l +  1)!. The factor ~.1 r can be written as a 
nested integral over/-I- 1 variables xi: 

~,V'= dxi dxt+l m! ( m + / +  1)! (3.14) 
I 

with Xo = 1. In this product, the I integrals on the left correspond to g + ver- 
tices, while the last integral corresponds to the f _  factor and the accompany- 
ing insertion of m additional factors of log 17 associated with the ~, vertices. 
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Now consider a term arising from the product of a factor of ~ -  1 
containing I] factors of g+ in the main line and mj factors of ~b offthe main 
line with another factor of ~ -  1 containing 12 factors of g+ and rn 2 factors 
of r Again, we choose L = l j  +/2 and M = m ~  + m  2. Each factor of ~ - 1  
in addition has one f _  vertex on the main line. At leading order, any 
diagram ~ resulting from this product will have the form 

~ = ~4/'(,;t((f_)) log n)2 ( , t ( (g+))  log n)L (2((~b)) logn) M (3.15) 

where the combinatorial factor A/" depends on the precise way in which the 
diagrams are multiplied together. It is simple to write a formula for ..ft. Let 
us assign variables xl~ j) to the main-line vertices arising from the first factor 
of i f -  l, and variables x f  -~ to main-line vertices arising from the second 
factor of i f - 1 .  Then the factor ~1/" for any particular diagram can be 
written analogously to Eq. (3.14). For instance, if all of the factors of g+ 
coming from the second factor o f ~ -  1 are further down the main line (to 
the right of) the factor o f f _  arising from the first factor of f f  - 1, then we 
immediately see that 

~4r = 
" ,-'" ) -,I' U if" i-ldx(il) I 0 dX~IIL] 

i = l  o m][  

/~ x.~21 ~, ( . ( 2 )  ),-2 
J- d.x.(2)\ ~("~ 

.= ~0 /'n 2 �9 

( M + 1 2 +  1)! 1 1 

( M + L + 2 ) !  ml! (m2-F 12 + 1)! 
(3.16) 

with x~ -')= x~,'~+ ] and xg ' )= 1. Now the allowed permutations of the vertices 
correspond to all permutations of orderings of {.di" }, {x)-')} within the 
multiple integral that preserve the orderings 1 > x', '~ > x~ 1' ... and I > xt, 2) > 
x%? ) . . . .  But this allows one to factor the two nested integrals over the 
variables {x("} and {.x '2)} completely, so that the sum over permutations 
P of A r can be expressed as 

" ; "  41' 

/< j  =]'~Ij .I 0 12) ,,.(2) X j - I "  (2)'~ ~ "'12 " (2) 
X ax) ; Jo a x , _ . + , - -  

1 1 = 
(ml + l j  + 1)! (m2+12 + 1)! 

v(!) Vnl 
"~/I + l" 

dx~")+' m, ! 

(~.(2) ),,_, 
~/2+ l 

m 2 ! 

(3.17) 
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where .,c~21 = 1, which deconvolves the two nested integrals, allowing their 
factorization into terms of the form (3.14). This provides a direct proof  of 
the identity (3.12). 

Using the same argument, we can easily show that at leading order, 

((~ (3.18) 

so that the leading-order contribution to ( log  ~ )  is 

( log  ~ ) /  ~ ( - - 1 ) P - I  = - -  ( ( ~ - -  1 ) y  
n = l  P 

= 2((tO)) log n (3.19) 

We therefore arrive at the result 

( log  ~ ) ~ =  log (1 + ( 5  e - 1 )~) (3.20) 

We shall see that this is true also at subleading order, provided we restrict 
ourselves to terms diverging logarithmically with n. 

3.2. S u m m a t i o n  of Sub lead ing  Terms: Universal  

Subleading terms are those with one less power of log n than 6. There 
are two ways in which such terms can arise: 

I. In a term arising from ( ( ~ -  1)P) with p > 1, more than one fac- 
tor o f f _  or g+ may appear  at the same vertex. Since these two or more 
factors are integrated together, the net result is that the order of the term 
in log n is reduced with respect to the order in 6. If more than two factors 
o f f _  or g+ appear  at the same vertex, or if more than one vertex contains 
more than one factor, then at least two factors of log n will be lost with 
respect to factors of 6, so the term will be at most of sub-subleading order. 
Thus we need only consider diagrams with one vertex possessing two fac- 
tors o f f _  or g + ,  with all other vertices containing at most one factor. 

2. Recall that the form of the propagator  sums along a particular 
subbranch tip to a given vertex is Z~t=0 2N. M log M n', where n' is the num- 
ber of particles below the vertex in question, either on the weak or the 
strong side [see Eq. (2.26)]. Thus either 17' =y(en) 17, or i1' = (1 - y ( e n ) )  11, 
where e is the random variable at the vertex being explicitly considered, 
and n is the total number of descendants below that vertex in both sub- 
branches. There are two ways in which the order of the propagator  in log 1l 
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v 

L= Pq+ f'a 

ITI 1 

m z  

Fig. 17. This diagram indicates a term in the product indicated in Fig. 15 that is w_ ((f2_)).  
Now all L = / t  + 12 factors of  g+ are to the left of the vertex containing the two factors o f f _  
averaged together. Note that at the subleading order, which we are considering here, the two 
separate side branches emanat ing from these two factors o f f _  (one containing m t factors 
of $, and the other containing m 2 factors of $)  can be treated as independent. 

may be reduced by one. The first way is for a factor of logy  or log(1 - y )  
to be taken in the highest order in log n' term ( M =  N) in the propagator. 
The second way is for the second highest term in log n ' (M = N -  1 ) to be 
taken, but without including any factors of log(1 - y )  or log y. 

Terms o f  type 1. An example of a term of type 1 is provided by 
,J ( log ~),.~, ~ <<f2_>>. There is no contribution from ( ~ - 1 )  to this term; 

the first contribution arises from - (  1 / 2 } ( ( f f -  1 )=) (see Fig. 17). It is easy 
to see that 

( ( ~  - 1 )2 ) . , . 1 . .  <<.r-'_ >> 

k k k ~ ( L )  I 1 M, 
= ~ Ii m l V m ~ ! ( M + L + l )  w 

/ 1 = 0  / 2 = 0  m l = 0  m 2 = O  " - ' 

x (2(( g+ )) log n) L (2((~b)) log n) M ( 2 ( ( f  2_ )) log 17) (3.21) 

As in the above, M =  nh + m2 and L =/~ + 12. The sums are straightforward, 
and yield 

1 ~",2-.,./, .~- <<. r'-_>> 

(( f 2_ )) 

2(~ f _  ~ 

• [exp(22((qJ)) log n ) - e x p ( 2 2 ( ( g + ) )  log n)] (3.22) 
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o 

Fig. 18. This diagram indicates a term ~: ( ( f _ ) )  arising from ( ( ( ~ - 1 )  3)). At subleading 
order, the factor of ~ - 1 whose first f _  vertex appears separately can be averaged independ- 
ently of the other two factors of ~ - 1. 

The subleading terms proportional to (( g~_ )) and ((f_g+)) are com- 
puted in exactly the same way, and combine with the term proportional to 
( ( f ~ ) )  to yield 

((~oz ~ -- 1)2).< ~_ << q;>> (<4,-'>> 
2((f_ )) 
- -  [exp(22((~,)) log 17) 

- exp(22(( g+ )) log n)] (3.23) 

Now we must compute the subleading contribution oc ((~2)) arising 
from ( ( ~ e _  1)p), with p > 2. A typical diagram is shown in Fig. 18. There 
are a total of p(p-1)/2 choices of the two factors of ~ e - 1  which con- 
tribute the factors o f f _  or g+ which will be integrated together. The com- 
putation is considerably simplified by the fact that the remaining factors of 

- 1  can be averaged separately of these two factors, by a simple exten- 
sion of identity (3.18), which we used above to factor the leading-order 
terms. Thus 

p(p- 1) 
m 

2 
_ _  ( ( o ~ _  1)2).,./, ~ <<a,-~>> [ - ( ~ _  1 ) l i p - 2  (3.24) 

leading to 

( log ~.)~.~, .~. << ~,:>> 

L ( - l ) P - l p ( p - l )  
= ( ( ~ -  1 ) 2 ) ~ ,  ~ << e~>> 

p=2 P 2 

= _ ( ( ~ e _  1)2)~., ' 1 ( 1 ) - "  
.~ <<~2>> ~ 1 + ( S e _  1) / 

- -  [ ' (  ~ e - -  1 ) / ] P - 2  

(3.25) 

822855-6-14 
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Using Eqs. 
obtain 

(3.6) and (3.23), and substituting from Eq. (3.25), we then 

( l o g  ~e)sl" ~ <<~:>> -- 
((~,-')) 

4((f_ )) 

l (( 4J-~ )) 
4 (( f_))  

- -  [ 1 - exp( - 2 2 ( ( f _  )) log n) ] 

- -  (1 - n -2a<< r_ >>) (3.26) 

Recall the definition of  ( ( f _ ) ) :  

( ( f  - )) = &/ q"-' xU(~l) Y'~(~7) ( 3.27 ) 

where x(rl) and y(q) refer to the unstable manifold for branch competi t ion.  
Clearly ( ( f _ ) )  > 0, which implies that the correction to ( l o g  ~ )  displayed 
in Eq. (3.26) approaches  a constant  as n ~ ~ .  Thus this correction will not  
affect the values o f  the multifractal exponents  aj(q) [defined in Eq. (1.6)],  
provided that they are computed  in this limit, as the terms logari thmic in 
n in ( l o g  ~ )  will still dominate.  

Terms of type 2. Now we turn to subleading terms of  type 2, for 
which a subdominant  term in one of  the propaga tors  is taken. We first con- 
sider such terms involving factors of  log(1 - y )  or  log y (to be averaged 
with g + or f _ )  arising from the expansion of  a leading p ropaga to r  term, 

2u. u{ log[(  1 - y)  n ]  } N = 2N. N[ log N II + N log( 1 -- y)  log N-  J n + .-. ] 

(3.28) 

with a similar result for log y. Since 2~v. u = 2/N, the log(1 - y )  in Eq. (3.28) 
multiplies 2 IogN-~ n, which is comparable  to a leading p ropaga to r  term 
with one less vertex. 

Fig. 19. At subleading order, terms ~ (<f_ log y>> can be obtained by averaging a single 
factor of .~ - l; a typical diagram is shown. The arrows indicate the f_ vertices, each of which 
is a potential source of a factor of <<f_ log y)>, except the last, which has no propagator to 
the right to provide a factor of log y. 
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We will first consider terms containing the factor ( ( f _  log y)).  Looking 
at such a term arising from ( ( ~ -  1 )") ,  we see that the different factors of 
o~ _ 1 interact only through the various possible orderings of their g + and 
one f _  vertices on the main line; thus we can factor these diagrams, and 
consider only the contribution from a single factor of ~ -  1 (see Fig. 19). 
This is 

( ~ -  1).<. ,  <<:_ foe>,>> 

~'- ~. 1 
=/__~o ,, =, (m + l)-------~ ( 2 ( ( f _  log 3@ )(2(( g+ )) log 17) / (2((~k)) log n)"  

~ m--  1 
+ t~o_ . . . .  2 (177 + l)-----~ (2((f_ l o g  y ) )  ) ( 2 ( ( f _  )) log n ) ( 2 ( (  g +  )) log 17) / 

x (2(( ~b )) log I1) .... t (3.29) 

The first term on the right-hand side of Eq. (3.29) corresponds to the case 
where the factor o f f _  on the main line is averaged with log y, and the 
second term corresponds to the case where a factor off of the main line is 
averaged with log y. The sums yield 

( ~ - 1 ),/. ::. <<.r_ tog >.>> = 22(( ~b )) log n ( ( f _  log y))  

x exp(2(( ~b )) log n) (3.30) 

Turning to ( ( f f -  1 ) r ) ,  we see that there are p choices of which factor 
of ~ - 1 contributes the subleading term oc ( ( f _  log y)) .  Thus 

( log ff),,.t. ~, <<f_ log >,>> 

~ (-I): -l 
= ( 0~ - 1 ).,.c .,. <<f_ log .,,>> - -  p i - ( ~ -  1) / ]  p - I  

/,=~ P 

( 1 ) 
= ( ~s -- 1 )-,'/. ~ <<f- log >'>> 1 + ( ~ _ 1 )  I 

= 2 2 (( @ )) (( f _  log y))  log,* (3.31) 

By coritrast, terms oc ((J'_ log(1 - y ) ) )  can arise only from a com- 
bination of two or more factors of ~ - 1 ,  since a factor o f f _  is always 
associated with a weak branch in a single partition function, and hence 
potentially only with a factor of log y. Consider a term arising from a 
product o f p  factors of ~ -  1, each containing I i factors of g+ in the main 
line, followed by one factor o f f _  and then ml factors of ~ off of the main 
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line. Let  us fur ther  suppose  tha t  the factor  o f  ( ( f _  log( 1 - y ) ) )  arises f rom 
the  factor  o f f _  a p p e a r i n g  in  the  m a i n  l ine of  the i - -  1 factor.  T h e n ,  wr i t ing  
L = ~ i  li a n d  M = Y'.i m~, we see tha t  a n y  p a r t i c u l a r  s u b l e a d i n g  c o n t r i b u -  
t ion  p r o p o r t i o n a l  to ( ( f _  log( 1 - y ) )  (which  we t e rm 9 )  will be  g iven by  

= v4r (2((  g + )) log n)  c ( 2 ( ( ~ ) )  log n)  M 

x (2((.f_ log(1 - y ) ) ) ) ( 2 ( ( f _  )) logn) p - '  (3.32) 

where  the factor  ,/I r is d e t e r m i n e d  by  the precise o r d e r i n g  of  vertices. In  
fact, it is easy to see tha t  Jff will be g iven  by  a ve r s ion  of  Eq. (3.16) 
a p p r o p r i a t e  to p factors of  ~ - 1, wi th  the o n e  a d d i t i o n  tha t  there  shou ld  

0 0 ~ o.__i 
J 

_ _ o  o o 
m2 

L = g~ + f'2 

w ~ 6 6 6 6  
mz 

Fig. 20. At subleading order, terms cc ( ( f  log(l - y ) ) )  require at least two factors of 
- 1 .  This diagram arises from a product of the form shown. The arrow in the diagram 

corresponding to a single factor of ~ - 1 indicates the vertex (with a factor of one rather than 
a factor off_ or g . )  at which the term log( 1 - y ) ,  arising from the propagator, is taken. To 
the right of this arrow, it is not necessary to keep track of whether vertices are f_  or g +, 
provided at least one such vertex appears. In the combination of the two factors of ~ - I, this 
log(l - y )  is averaged with a factor off_ contributed by the other partition function. 
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be a factor of d/dx~,~+~ inside the integral over the variable - ~  [and to "~" / I + 1 
the right of the factor of (xl,~+~)"Tm~!) ]. Now the integral of all factors 
to the right of this new operator will yield some number times .~,~(1)/1 + l raised 
to some power; thus the -I~ d/dx  t, + ~ operator can be viewed as acting on only 
one of the factors of ~ - 1 at a time. It follows that the sum over permuta- 
tions of Jl: can be represented as a sum of averages involving two factors 
of ~ Z -  1 only, with the other factors of ~ -  1 averaged separately. More 
precisely, 

( log  .~e).< ~ ( ( f -  log(l - ) ,1 ) )  

= (__  l ) p - ,  ( ( . ~ e  1 ) 2 ) , <  < <<.:-1ogl, -.,.)>> 
p = 2  

x [ ( Z -  1) , ]  p-2 (3.33) 

This naturally represents a considerable simplification of the problem. 
Now we must compute ( ( ~ - 1 ) 2 ) . <  ~ <<y-~og~-y~>>- This is given by 

(see Fig. 20) 

( ( ~ -  1)2).~/, ~- <<f_ Jog~l-yl>> 

= 2  ~. ~. ~. ~ ( L )  1 1 

11=o 12=o .,l=o .,,_=l lj m ~ ! ( m 2 - 1 ) !  

( M - l )  v 
x " (2 ( (g+) )  logn) L 

( M + L ) !  

x (2( (~) )  log n) M ( 2 ( ( f _  log(l -- y)))  ) (3.34) 

where the factor of 2 accounts for the distinguishability of the contribu- 
tions of the two partition functions. As in the above, M = m~ + m2 and L = 
l~ + l 2. The sums can be performed directly, and yield 

( ( ~  - 1 ) 2 )  s/. ~ ( ( f _  l og ( l  -- v ) ) )  

= 2 ( ( f _  log(l -- y)))  - -  
((~)) 

<< f -  >> 

x [exp(22((~J)) log n ) - - exp (22 ( (g + ) )  log n)] (3.35) 
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Since 

our result is 

O7_, 

~. ( - 1 )  p - ' ( p - 1 ) [ ( ~ - l > , ]  p-2 
p = 2  

=_( 1 )2 
1 + ( ~ - 1 ) /  

= --exp( - 2 2 ( ( r  log n) ( 3 . 3 6 )  

( log  ~ >.,./, ~ <<.:_ Iogtl-vD> 

= - - 2 { f _  l o g ( 1  - -  y ) > >  - -  

= - - 2 ( ( f _  log(1 -- y)))  - -  

<< ~,>> 

2((J'_ )) 

<(q' >> 

2(( f _  )) 

[ 1 - exp( - 2 2 ( ( f_  )) log n)] 

( 1 --n - 2;+<<f- >> ) (3.37) 

i.e., a constant plus a decaying power law in 1+. 
Terms proportional to ( (g+  log(1 - y ) ) )  appear at subleading order 

both from one factor of ~ -  1 and from two factors averaged together. The 
first case arises from the fact that a g + factor has a strong branch associated 
with it downstream, which can provide a factor of l o g ( 1 -  y). The com- 
binatorics and the result are thus the same as for the term oc ( ( f _  log y))  
given in Eqs. (3.29)-(3.31). 

The second case involves the averaging of a g + factor arising from one 
partition function with a factor of log( 1 - y) arising from the second parti- 
tion function, leading to the same combinatorics and result as for the term 
oc ( ( f _  log(1 - y ) ) )  given in Eqs. (3.33)-(3.37). Thus one obtains 

( log ~ ) . <  ~. <<g+ iog<l-yl>> 

= 2(( g+ log(1 -- y)>) (( ~b )> 

1 [1 - - e x p ( - - 2 2 ( ( f _ ) )  l o g n ) ] }  (3.38) x 2 log n 2((f_~---~ 

We have been discussing subleading contributions in which a sub- 
leading propagator term is taken within the diagram, leading to factors 
log y or l o g ( 1 - y )  being averaged with f _  or g+.  In addition, there are 
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subleading contributions in which such factors do not appear, but in which 
2N. N-I appears rather than 2N. N = 2IN.  In Appendix B we show that 

1 ((log-'( 1 - y))) _ 2' (3.39) 
'lu, N-  ' - 2 ((-~og(i Z ~v7 )- ~ 

is independent of N. Comparing the expansion of the highest order 
propagator term, Eq. (3.28), with the form of the full propagator, Eq. (3.4), 
we note that the independence of N of 2u. N- l -- 2' allows us to translate 
directly our previous results to obtain the terms oc it', since the two 
terms in the Nth order propagator oc 1ogN-ln [one including a factor 
of either log y or l o g ( 1 -  y), and the other a factor of 2'] are similar in 
form. In particular, we substitute i t ((f_ log y))--+ i t ' ( ( f_) )  in Eq. (3.31), 
2 ( ( f  l o g ( 1 - y ) ) )  -o 2 ' ( ( f _ ) )  in Eq. (3.37), and 2((g+ log(1 - y ) ) )  --* 
2 ' ( (g+))  in Eq. (3.38), to obtain 

~ . , = i t  ( ( ~ b ) ) - [ 2 1 o g n - 2 ( ( f _ ~  ] ( log ~)~.c , ~ 1 (1 - n  -z~<<f- >> ) 

(3.40) 

which is again a combination of a logarithmic divergence, a constant, and 
a decaying power law. 

3.3. Summation of Subleading Terms: Nonuniversal 

At subleading order, there are also nonuniversal terms. These arise 
from taking one factor of ao - 2 I. o instead of ,l log n in the first propagator 
sum in a diagram; taking nonuniversal terms in any propagator sum 
upstream of this will lead at most to sub-subleading terms. Reviewing the 
derivation of Eq. (3.6), we see that 

(~S e -  1 ).,./. ,~ ,0 = ao((~b)) ~.v (2((0)) logn) 'v 
N = 0  

= ao( ( ~b )) exp(2(( r )) log 1l) (3.41) 

Note that this summation starts at N = 0. It follows immediately, using the 
methods developed above to prove factorization of averages of products of 
Y ' -  1, that 

( log ~ ( ~ ' - -  1)st. o~,,0 ~ (--1) p-1 [(~*L~e--1),] p - '  =ao ( ($ ) )  
p = l  

(3.42) 
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3.4. S u m m a r y  of  Leading and S u b l e a d i n g  Orders  

To summarize, we have the following result for ( log  ~ ) ,  combining 
the leading-order, subleading universal and subleading nonuniversal com- 
putations [Eqs. (3.19), (3.26), (3.31), (3.37), (3.38), (3.40), and (3.42]: 

( log  ~ ) =  2( (~) )  logn[1 + 2( ( (g+ l o g ( 1 - y ) ) )  

+ ( ( f _  log y ) ) )  + 2 ' ( ( i f ) )  ] 

1 
- -  [1 -n --~<<I- >> ] 
2 ( ( f _  )) 

x (~  ((~'2)) + 2 ( (~) )  (( 0 log(1 -- y)))  + 2'((~b)) 2 ) 

+ ao((~))  + O(~ 3 log n) (3.43) 

where the O(~31og n) terms are sub-subleading (see Table I). 

6 

The Orders of the Terms ~ Divergent in log n Appearing in the 
6-Expansion for (log ~/e) 

6 a 

6 3 

X "'" Leading 
divergent series 

ngedes 

log 0 log 2 n_ log 3 n 

Table I. 

"A solid cross indicates that a term of that order in 8 and log n appears; a dashed cross 
indicates that, while such terms appear in some diagrams, they cancel between diagrams. 
The leading and subleading resummations discussed in Section 3 correspond to sums down 
the diagonals of this table. 
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Examining in detail the resummations performed above, we see that 
all of the terms contributing to the coefficient of log n in Eq. (3.43) arise 
from separate averages of single factors of ~ -- I; averages together of two 
factors contribute to the second term on the right-hand side of Eq. (3.43). 
Anticipating that this is true to all orders, we see that 5 

( log  ~ )  l o g ( ~ )  
lim - - =  lim (3.44) 

. . . .  log 17 . . . . .  log ii 

Thus, if we are concerned only with the term proportional  to log n, which 
should dominate as n--, or, this can be obtained from l o g ( ~ ) .  This quan- 
tity is computed by much less elaborate means in Appendix D. 

There are two methods of checking Eq. (3.43), which resums all terms 
of the form 3 N log N i1 or 3 s  logS-~ n, with N~> 1. The power laws in n may 
be converted into an expansion in log n and then compared directly with 
the ~-expansion, as developed to second order in Section 2 and to fourth 
order in Appendix B. The reader may easily be satisfied that these two 
series agree, provided that comparison is confined to terms proportional to 
~N 1ogN n or 3N logN- ~ 17, in this case with 1 ~< N ~< 4. 

A second method of checking this result is to recall that the 
dependence of the partition function I upon a is quite trivial: ~ oc 11 ~ [see 
Eqs. (1.7) and (1.10)]. However,  in our perturbative method this a 
dependence is distributed throughout  the branched tree, with a factor o f y "  
or (1 - y ) ~  corresponding to this a dependence appearing at each vertex. 
This considerably obscures the a dependence, but may also be used to 
check the final result for ( log  ~ ) ,  Eq. (3.43). Let us write again Eq. (1.10), 

( log  ~ (q ,  a; n) )  = a log 17 + F(q, n) (3.45) 

where F has no dependence upon a. This implies that 

and 

d( log ~e)  = log I1 (3.46) 
da 

d r ( log  ~ )  

da" 
=0 ,  r >  1 (3.47) 

5 Using the terminology of statistical mechanics, averages that can be reduced to individual 
averages ( . ~ -  I ) may be termed disconnected, while those involving averages together of 
more than one factor of ~ - 1 may be termed connected. Thus Eq. (3.44) corresponds to a 
sum of disconnected averages only. 
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These relations provide powerful constraints on our result. To check these 
identities against our result for ( log  ~ ) ,  Eq. (3.43), it is necessary to use 
[see Eqs. (2.3) and (2.11)] 

and 

dg+ 
da = - ( g +  + 1 ) log( 1 - y) (3.48) 

df_ - f _  log(y) (3.49) 
da 

Note that due to Eq. (3.48), taking the derivative with respect to a effec- 
tively reduces the order in 6 of terms involving g+ by one. Thus we can 
only compute derivatives with respect to a of Eq. (3.43) to 0(3). 

Let us rewrite Eq. (3.43) as 

( log~)=A(q,a) logn+B(q,a)(1-n- ' - ) '<<f->>)+C(q,a)+ ... (3.50) 

where the coefficients A(q, a), B(q, a), and C(q, a) can be read from 
Eq. (3.43), and the coefficient C=a0((~b)) is the only nonuniversal one. 
Taking the derivatives with respect to a, we see after some computation 
that indeed 

dA(q, a ) _  ! + 0(32 ) (3.51) 
da 

and 

dB( q, a) 
0(62 ) (3.52) 

da 

Thus Eqs. (3.46)-(3.47) are satisfied provided that the nonuniversal 
constant ao=0 .  It seems that we have succeeded in fixing this quantity. 
However, we remind the reader that many cutoff procedures will effectively 
break the invariance expressed by Eqs. (3.45)-(3.47) by introducing a 
dependence on the number of particles in an elementary branch n,,, so the 
result ao = 0 should not be taken too seriously. 

4. INTERPRETATION OF RESULTS 

In Section 3, we resummed the leading and subleading divergent series 
to all orders in perturbation theory. We found a remarkable result. The 
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resummed series consists of three types of terms. In the first place, there are 
terms diverging logarithmically with i,. These terms are all universal in 
form. In the second place, there are constant terms--at  subleading order 
these include nonuniversal constants. Finally, there are power-law correc- 
tions to ( log  f f ) ,  which involve universal coefficients multiplying n -J ,  
with 

d = 22 ( ( f_  >) (4.1) 

a positive quantity. Thus as n---, co we expect only the terms oc log n to be 
relevant in determining the quenched dimensions cry(q). Recalling the coef- 
ficient of this term from Eq. (3.43), we conclude that 

(( q;(q, a:e(q)) )) { 1 + 2E (( g +(q, a ~,(q)) log( 1 - y)))  

+ ( ( f _ (q ,  aQ(q))log ) ,))]  

+ 2'((tp(q, cry(q)))) + 0(6"-)} = 0 (4.2) 

which is equivalent to ((~,(q, tr~_,(q)))) =0.  (Setting the other factor equal 
to zero does not lead to an acceptable solution.) 6 But this is precisely the 
same as the criterion that determines the annealed multifractal dimensions 
a~/(q)! This is unsurprising, as the logn term in Eq. (3.43) resulted only 
from products of single averages of ( ~  - 1 ) ,  as discussed in Section 3 or 
in Appendix D. This implies that the true n ~ co quenched multifractal 
dimensions are identical to the annealed dimensions, negative values o f f  
and all. 

However, this conclusion is based upon an overly naive interpretation 
of Eq. (3.43), overlooking crossover effects, which we now discuss. Con- 
sider again the power-law term ~: n -~, with A given by Eq. (4.1). We can 
understand the role played by this term by considering model Z, in which 
the unstable manifold for branch competition in the x -y  plane is simply a 
straight line emanating from the unstable fixed point at (I/2, 1/2), which 
turns vertical upon reaching the x =  0 or x = 1 lines (see Fig. 3). As a func- 
tion of q, we can write c'~l 

~'�89 q < l  
x = (0, r/~> 1 (4.3) 

6 Numerical evaluation of the second factor on the right-hand side of Eq. (4.2) for, e.g., model 
Z [see Section 1 or Eqs. (4.3) and (4.4)] quickly leads one to the conclusion that setting this 
factor equal to zero does not  lead to a physical solution for a~(q), or, indeed, to any solu- 
tion for some values of  q. 
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and 

, (�89 1 -- [~ff/(l + v)]}, q < l  
) = ~i]/q, q/> 1 (4.4) 

with # =  v/[2( 1 + v)]. 
Recalling the definition of ( ( f _ ) ) ,  

( ( f _ ) )  = e~~| dl 1 q"- '  xq(rl) (4.5) 
Jo y~(q) 

we see that in general, ( ( f _ ) )  is a function of both q and a. This presents 
us with a paradox, because any exponent A of a power-law correction to 
( log  ~ )  must be independent of a, due to the invariances expressed by 
Eqs. (3.45)-(3.47). We resolve this paradox by realizing that Eq. (4.1) is 
merely the lowest-order-in-6 expression for the exponent A; we should 
write (4.1) more precisely as 

A(q) = 22 ( ( f_  )) + 0(52) (4.6) 

where A is now the exact exponent of the leading power-law correction to 
( log  ~ ) .  The higher order corrections on the right-hand side of Eq. (4.6) 
will cancel the dependence upon cr arising from ( ( f _ ) ) .  

Let us first compute ( ( f _ ) )  in model Z for a = 0. 

obtaining 

( ( f_ (q ,  a = 0))) - v(q + 1--~ (4.7) 

A(q) v ( q + l )  + 0 ( 5 2 )  (4.8) 

which goes to zero exponentially in q for large q. 
Now consider ( log  ~ )  from Eq. (3.43). For  convenience, we set the 

nonuniversal constant ao = 0. If limq_ ~ A(q)= 0, we see that (returning to 
the case of general a), 

lim lim ( log ~ ) / + ~./ 
q ~ .,-. ,, ~ ~ log n 

= lim 2((0)) [1  +2(((g+ log(1 - y ) ) )  
q ~ o c  

+ ( ( f _  log y))  ) + 2 '((O)) ] (4.9) 
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while 

(log ~e)/+., / 
lim lim 

, , ,  o ~  , t  ~ ~ log n 

= q-~lim {2((~9))[ I +2(((g+ log(1 - y ) ) )  

+ ( ( f_  log y)))  + 2'((~))  ] 

- 2  [~ ((~ba))+ 2((ff )) ((~, log( 

=,~_~lim [ 2((~,)) 

because 

1 - y))) + ;t'((~))-'] } 

+ 22((~)) ( ( f -  log (1Y__-~))) - ~ ((~b2)) 1 (4.10) 

Thus, for large values of q, the apparent quenched dimensions, which we 
term a~(q), will be determined by 

- g  ((02)) + 0(53) = 0 (4.12) 

These apparent dimensions are the ones that will be seen, e.g., in numerical 
studies. Note that this is simply the naive (nonresummed) result at 0(5"-) 
for the dimensions a~(q) which can be obtained from ( l o g ~ ) =  
(log ~ ) ~  + (log ~ ) 2  + 0(53) [see Eqs. (2.20) and (2.34)]. 

Of course, for sufficiently large n, we will always see a crossover back 
to the true quenched dimensions. The crossover value of n for which this 
occurs, n,.(q), will be determined by 

A(q)logn,.(q)=[22((f_))+O(52)]logn,.(q)=l (4.13) 

or, from Eq. (4.7), 

[ o 1 n,.(q)=exp v (q+ l  + 0 ( 5  ) (4.14) 
22 

[Note that the first term in the exponential in Eq. (4.14) is formally 
O(5-1).] Thus, in practice, the true quenched dimensions will not be 
observable, even for moderate values of q, except for monstrously large 
systems. Although we have taken an explicit form for A appropriate for 

lim lim ( 1 - n - -Jc q~) = 22 ( ( f_ ) )  log n + O(5"-) (4.11 ) 
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model Z, we expect the same qualitative results to hold for any branched 
growth model, and in particular, for DLA. 

Suppose that we had not set a = 0 at the outset of this calculation. It 
is simple to compute ( ( f_ (q ,  a)))  for model Z, 

and 

1(1"~ 't ~(1 l~" f'duu'~(1 ~) ~" 
( ( f - (q 'a ) ) )=v \2J  +v/  :,, + (4.15) 

( ( f  _(q, a) )) ,~ v(q + 1) 

which is a simple modification of our previous result, Eq. (4.7). For fixed a, 
Eq. (4.16) leads to the same super-exponential dependence of n,. on q dis- 
played in Eq. (4.14). We expect the annealed a.~j(q) to approach a constant 
as q ~ ~ ,  while a~(q)  ~ flq, fl ~ 1 - v < 1 for q ~ co. ~t~ It is not, however, 
legitimate to introduce these functions a(q) into Eq. (4.16), because once a 
becomes large, we must properly include the effects of the next-order term 
in 6 in Eq. (4.14), which will offset this spurious er dependence. 

4.1. Numerical  Results 

In addition to the analytical computation of ( log  ~ ) ,  to which the 
bulk of this work is devoted, we have also computed this quantity for the 
random branched growth model by a Monte Carlo method. For  these 
purposes, it is convenient to use model Z, which can be defined (see Fig. 3) 
by writing x and y as functions o f t / a s  in Eqs. (4.3) and (4.4). The curve 
in the x y  plane parametrized by these functions (and their complements 
1-x,  1 -  y) is precisely the unstable manifold shown in Fig. 3. 

We must also fix the function p(e). We expect our results to be sen- 
sitive only to the e ,~ l  form of p(e)~poe"-'. It is thus convenient to 
choose 

e , ' -  I e - , :  

p(e) (4.17) F(v) 

as a suitably normalized form for p(e). 
Our procedure is now quite simple. Starting at the first branch point, 

at the root of the tree, we fix n, the total number of particles in the tree. 
We then choose a value of e with the distribution given by Eq. (4.17) and 
compute the values of x and y at that branch point from Eqs. (4.3) and 
(4.4). We then repeat the process on each of the two subbranches and so 
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forth. If the total probability on a branch is zero (as will be the case for 
values of r//> 1 on the weaker branch in model Z), then it will not con- 
tribute to S ,  Pq, and it can be disregarded. If the total mass of a branch 
is less than one, then we stop the subdivision process. We then form the 
sum either of the probability moments of these ends, which correspond to 
the elementary subbranches (indexed by i), 

Z(q) =~,P7 (4.18) 
i 

or else the sum weighted by a simple function of the mass of each elemen- 
tary subbranch 

Z'(q)  = ~. nq_ ~p7 (4.19) 

We have used the factor i11 -q on the right-hand side of Eq. (4.19) because 
a.~j(q)=a~(q)=q-1 for a nonfractal cluster, and the elementary sub- 
branches are presumably not fractals. Numerical results for the scaling 
behavior of these two versions of the partition function were, for practical 
purposes, identical. We can now determine the "apparent" dimensions 
a,t(q) by studying the scaling of ( l o g Z ( q ) )  with logn, where ( . . . )  
indicates the average over the statistically independent cluster realizations. 

i i i , , i , ,  I i , , , ~ l l  I I ~ I I I , , ,  

M o d e l  Z,  v = 0 .6  

~5 

~ -  - 1 0  

v 
- 1 5  q = 5  

- 2 0  I I I I I I I I I  1 I I I 1 t i l l  I I I q I I  

1 0  1 0 0  1 0 0 0  1 0 0 0 0  
n 

Fig. 21. Numerical results for ( I ogY ' i pT )  vs. logn for a Monte Carlo realization of model 
Z random branched growth, for q = 2 and q = 5. We used a parameter v = 0.6 to specify model 
Z. The linear slope indicates apparent multifractality, the value of the slope giving the 
apparent dimensions a.~.(q). 
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Although we performed simulations for a variety of values of 0 < v < I, 
we shall display our results only for v=0 .6  (results for other values of v 
are qualitatively similar). We used values of n varying from 1l= 10 to 
1l = 2560, varying by powers of two, and we averaged o v e r  10 4 realizations 
at each size. Figure 21 displays ( log  Z )  vs. logn for two values of q. The 

(a) 

0 

-1 
0 

, , , I , l , I , , , I , , , I , , f 
2 4 6 8 10 

q 

(b) 
0.8 . . . . . . . . . .  I . . . . . . . . .  I . . . . . . . . .  I . . . . . . . . .  I . . . . . . . .  

Mod 

0 .6  

0 .4  

0 .2  

0 .0  . . . . . . . . .  I . . . . . . . . .  T . . . . . . . . .  I . . . . . . . . .  I . . . . . . . .  

0 . 3 0  0 . 4 0  0 . 5 0  0 . 6 0  0 . 7 0  0 . 8 0  

Fig. 22. (a) The apparent dimensions a~,(q) vs. q for 0 < q < 1 0 ,  and (b) the Legendre 
transform of this function, f (e) ,  computed numerically for model Z with v = 0.6. No negative 
values o f f  appear. In addition, since we compute a~(q) only for q > 0, we show only the left 
side of the multifractal spectrum. Note that model Z has the pathological feature that 
limq_ 0 a(q) ~ - 1, due to the fact that much of the cluster surface has growth probability zero. 
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linear scaling is quite evident in these plots. Extracting the slope of the 
linear part, we find ae(q) as displayed in Fig. 22, with its corresponding 
f(cc) [defined as the Legendre transform of aMq), not of r(q)--see Section 1 
above for a discussion of the relation between these two quantities]. Note 
that the f(00 corresponding to the numerical quenched dimensions does 
not have any negative values o f f  appearing. 

We can implicitly solve Eq. (4.2) or (4.12) in order to find a~,(q) or 
the apparent quenched dimensions a~(q).  These are displayed with the 
numerical results in Fig. 23. For  comparison, we also show the one- 
propagator result from Eq. (2.37). It is clear that the annealed dimensions 
agree with the numerical results only for q < 2 ,  while the apparent 
quenched dimensions from Eq. (4.12) agree over the larger range q < 5 .  
From Eq. (4.14) for no(q), we already expect that for q =  3 the crossover 
from apparent quenched to annealed dimensions (for model Z with v = 0.6) 
in the numerical results will occur only for n >> 10 5. Since these dimensions 
are essentially identical for q < 3, it is not feasible to see this crossover in 
the numerical results. 

It is possible to understand the fact that for q not too large, we have 
a~(q) ~ a.~,(q), by recasting the expansion in the formal parameter 6 as an 
expansion in q - 1 .  In this way, one can show that a~,(q)=a~/(q)+ 
O((q-1)2). This is discussed in detail in Appendix E. 

5 (a) ~ '  I ' ' ' I ' ' ' I ' ' I ' . ' ~  

4 
(b) ..... ! 

3 -  (c) . . . . . . .  
. . . . . . .  _ _ :  

1 

0 

- 1  , , , I , , , I , , , [ , , , I , , , 
2 4 6 8 10 

q 

Fig. 23. P lo t  o f  a vs. q for  mode]  Z w i th  v = 0.6 computed  in var ious manners. (a) Sol id line: 
numerical results, as in Fig. 22(a); (b) dashed line: annealed dimensions a.~(q); these are also 
the apparent dimensions a~(q) at O(,~): (c) dot-dashed line: apparent dimensions, computed 
to O(~2); and (d) dotted line: the one-propagator result for a(q), from Eq. (2.37). We note 
that the computation for apparent dimensions gives excellent results for q < 5, but fails at 
higher values of q. The one-propagator result gives qualitatively correct results over the entire 
range of q. 

82285 5-6-15 
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5. C O N C L U S I O N S  

We now summarize the main results of this work, which concern the 
partition function ~(q ,  a; n) defined in Eq. (2.2). 

1. The multifractal dimensions for the branched growth model may be 
defined either by annealed averaging, for which [ira . . . . .  (s a.~/(q))) = 1, 
or by quenched averaging, lim . . . .  ( log ~(q ,  ry,, (q))) = 0. 

2. It is possible to compute ( log ~ )  perturbatively by expanding in 
a formal parameter 3, which counts branching vertices in a diagrammatic 
approach. The result is a formal expression 

N 

( l o g ~ ) =  ~ 3N(log ~ r ) u  = ~ Y" flN, MlogMn (5.1) 
N = I  N = I  M = 0  

where the parameter 3 = 1 in the physical case and the coefficients { flu. M} 
can be determined from the unstable manifold for branch competition in 
the underlying model. 

3. It is possible to resum the leading M = N  and subleading 
M = N -  1 terms at all orders N in Eq. (5.1). The result is an expression for 
(log ~ )  which combines a logarithmic term in n with a constant and a 
decaying power law: 

(log ~(q ,  a, n))  = (( ~(q, ~))) Fo( q, a) log n + El(q, ~)(1 -17-J)  + -.. 

(5.2) 

with d(q, ~) > 0. 

4. From Eq. (5.2), we see that in the limit t7--* co, a,~(q) is fixed by 
requiring ((qJ)) =0,  which is also the criterion that fixes r Thus, in 
the limit of large 17, r  a.~j(q). This limit is attained only for n >> 1l,, = 
exp(a exp bq). For n,~n,., the apparent multifractal dimensions a~(q)  
r Furthermore, there is numerical evidence that, unlike the annealed 
dimensions, these apparent dimensions do not exhibit negative values of 
.tim). 

5. For appreciable values of q - 1 ,  n,. is enormous, so that the true 
quenched (i.e., annealed) dimensions are virtually unobservable. For 
q -  1 ~ 1, the true quenched dimensions will be observed; but in this case 
a~(q) --* a.~,(q) anyway. 

The multifractality of these models is of a quite interesting kind. The 
average of the partition function displays true scaling over the entire range 
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of q. The average of its logarithm, on the other hand, contains regions 
above and below 17,. with different scaling properties. As a function of q, 
there is a weak function q,.(n) such that for q < q,. and q >  q,. essentially 
different scaling properties are being explored. Since the essence of multi- 
fractality is the smooth variation of scaling properties with q, this 
represents, in a subtle sense, a failure of multifractality. 

It is therefore most accurate to say that these branched growth models 
are multifractal only as an ensemble; typical members of the ensemble 
exhibit this weak deviation from multifractality. Since the branched growth 
model seems to be a quite adequate theory, both qualitatively and quan- 
titatively, for diffusion-limited aggregation, we expect these quite novel 
properties to hold also for DLA. 

APPENDIX A. " P R O P A G A T O R "  S U M S  

It was claimed in Section 2 that 

( )N Po l o g  N -  I nj 
j~>l n)' = M=0 ~ )~N'MIogMn (A .1 )  

where the sum ove r j  is down a "main line" with a total o fn  particles. First 
we repeat the computation of 21.1. From Eq. (A.I) 

( ~ P~/=21,1 logn+21. 0 (A.2) 
j>~l 

Separating out the first term in the sum, we have 

21. i log n +/],1.o = Poll `-7 + (21. i log[ (1 -- y) n] + 21.o) (A.3) 

which simplifies to 

P o+ (21.1 log(l - y ) )  = 0  
IZ v 

(A.4) 

or [recalling Eqs. (2.7), (2.8)] 

1 
21,1 - - 2 =  (A.5) 

((log( 1 - y)))  
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The factor of Po has cancelled against that coming from the integral, so 
that 21., is independent of p0, as are all of the {2N.M }. The constant 2,.0 
(elsewhere called ao) is not determined by this argument; in fact we expect 
it to depend on the specific cutoff procedure in the theory, and thus be 
nonuniversal. 

To compute the remaining {2N.M}, we simply generalize the above 
argument. We have 

/ j ~>~ l  Po log N- I 

N 
= ~ 2N, M1Og Mn 

M=0 

po logN-- l n ( N ) 
- + ~, 2N. MIogM[(1--y) n] IlV M=0 

PO 1ogN- ' n F l  y "Jt-M=o2N, ~ ( M )  lOgt- n (lOgM-L(l - (A.6) 

leading immediately to 

N 

l~  n + ,~r l 2^"Mc~=O log/" n ((IogM-L(1 -- y))) = 0 (A.7) 

The left hand side of Eq. (A.7) is a sum of terms of the form 5r  log x n, with 
O<~K<~N-1. Setting each of the coefficients i/to equal to zero yields N 
simultaneous linear equations for the N quantities {AN.M, M~> 1}. The 
solution of these equations then gives {2N, M, M~>l}.  The nonuniversal 
coefficients {2N, o} do not appear in Eq. (A.7) and are left undetermined by 
this procedure. 

As an example, consider 2N, u. These may be obtained from the coef- 
ficient of the log N- t 17 term in Eq. (A.7), 

1 2 , ,1_2  
2N'N= N(( log(1-- y ) )) -- N - N  (A.8) 

It is also simple to determine the { 2N. N-,}.  The coefficient of the log N- 217 
term in Eq. (A.7) is 
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giving 

N ( ( l o g 2 ( 1 - y ) ) )  1 ( ( l og2 (1 -y ) ) )  2' (A.10) 
2N'N-' = --2~'N _~ ~ -----y--~ - 2  ((log(1 _y)>>2- 

The next coefficient, that for the logN-3n t e rm from Eq. (A.7), gives 

{~ {{l~ ] <-< l~ 2(-I -- )') }> 2"[ (A.I ]) 
)'N.N--2=(N--I) <(log(l__y)>>2 4 << log(1- -y )>)3J  

Clearly, one may iterate to generate any of the 2N, M that one needs. 

APPENDIX B. SERIES IN 6TO FOURTH ORDER 

In Section 2 we demonstrated the rules for computing (log ~ )  order 
by order in 5 and computed the terms of 0(5) and 0(52). The diagrams 
corresponding to these terms are displayed in Fig. 24; the results are 

( log ~ ) l  = (2 log I* + ao)((O)) (B.1) 

and 

1 (( ~2 55 ] ( l o g ~  2 = (2 log n + ao) [ )~((~b)> ( ( f _  log ( 1 - ~ ) ) )  -- ~ 

(B.2) 

Recall that m our more formal notation, 2 = 2  L 1 and the nonuniversal 
constant ao = 21, 0. In the expressions below, we will find it convenient to 
mix these two notations, as well as to use 2 ' =  22. i. 

At third order in 5, the diagrams appearing are shown in Fig. 25. The 
attentive reader will recall that each diagram will in general involve a 
number of terms, due to the different ways in which propagator terms can 

Fig. 24. 

(----O + - - -O)  

+( + o _ d  
- ' E  2 ~ + 2  ~ Q ) + 2 ~  + 2 ~  

+ I 8+ 8)  
Diagrams at 0(6) and 0(52). These correspond to the terms appearing in Eqs. (B.1) 

and (B.2). They also summarize Figs. 8-12. 
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_ + o 

+ r O l - - O  + r 0 - - - - I  

+ 2 ~ ' - - 0 ~ t - - 1 t  + 2 ~ ~ 0 

- ~ 0 -  w 

+ = , ~ + - - - t P - * -  

+2 = 8 + ; o -  

+ _ _ 8 _ _ .  _ _ _ ~  ~ - 4  

§ = ~q+ 8 o -  

i-" 

1 

Fig. 25. Diagrams at O(dS). These correspond to the terms appearing in Eq. (B.3). 

be averaged with vertices f _  or g+ .  A lengthy computation yields the 
following result for ( log  ~ ) 3 :  

( log  ~ ) 3  = (22.2 log2 n + 22, 1 log n + 22,o) 

x [22(( f_  )) (( ~ )) ( 2 (( ~ log(1--y))) + 2'((~9)) 

+ 2((f_ ))((~z)) ] +(2L, log n + 2,,o) 

y -~ 

+ ( ( f _  log [y (1 -  y)]))((  ~ log(1-  y)))'] 
/ 
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+ 22'((~)) 2 ( ( f_  log[y( l  - y ) ] ) )  

+ 2 (( ~ 2 )) (( f _  l o g ( 1 - y ) ) )  

y 1 

+ (21, I logn+21,o){(~))[22ao((,f_))((~'log(l --y))) 

+ 2222, 0 ( ( f -  )) ((~))  +ao((f_))((~))] 

+ ao(( f_  b ((~b-')) } (B.3) 

where the reader will recall that 22,_, = 2/2, the other propagator coefficients 
being given after Eq. (B.2). 

The nonuniversal terms at this order are collected at the end of the 
right-hand side of Eq. (B.3). Unlike the second order in ~, at O(~ 3) there 
are nonuniversal terms proportional to log n appearing. It can be shown by 
explicit computation that up to O(64), all such terms come from decaying 
power laws in 17, which in addition vanish when ( ( f _ ) ) ~  0. Thus these 
nonuniversal terms survive neither in the limit n---, m nor in the limit 
q--~ o0. 

We have also performed the O(~ 4) computation; we do not show the 
diagrams. In Eq. (B.4) below, we organize the result into four parts: 
(universal) terms multiplying the third-order propagator 23, 310g 3 n +  
23, 2 log z n + 23. 1 log n + 23, o, universal terms multiplying the second-order 
propagator 22, z log 2 n + 2_, l log n + 22, o, nonuniversal terms multiplying 
this propagator, and terms both universal and nonuniversal multiplying the 
first order propagator 2 L l lOgn+2L0,  which we omit. The universal 
results allow the reader to check our resummation in Section 3. The non- 
universal terms allow the reader to check our assertion that such terms 
resum to simple decaying power laws in i1. We have 

(log f'-e)4 = (23, 3 log3 n + 23, 2 log-" n + 2s, l log n +23.0) 

• [ - -222(( f_  )) 2 (( ~b))(2((O log(1 - y ) ) )  

-+- 2'(( I/J b } -- 22((f_ b 2 (( 1~2b ] 

+ (22.2 log 2 tl + 2=., log I1 + 2.. o) 

x{i23((~))I(( f - ))(( t l / ' ( ( f - log(1--y) loglY~_y~ 

Y 
+ ((~))  ~ f -  l~ 1 _ - - ~ / )  ((~ l~ -- Y))) 
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- 5 ( ( J _ ) )  ( ( f _  log(1 - y)))  ((ff log(1 - y ) ) )  

+ ( ( f _ ) )  ( ( f _  log y))  ( (~  log(1 - y ) ) ) ]  

Y 

-- 4 ( ( f_ ) ) - '  ((~b log(1 - -y ) ) )  

-- 8 ( ( f _  )) ((~b)) ( ( f _  log(1 - y ) ) ) ]  

_ 422,2((f_ )) 2 ( (~) )  2 

log Y ~\ 

-- ( ( f _ ) )  (~ 0 ) )  ( ( ~  2 log(1 - y ) ) )  

Y 
+ ((qJ)) (( ~b 2)) ( ( f -  l~ 1 __--~ ~ 

- ( ( r  log(l __ y ) ) ) ( ( ( f _  )) ( ( r  + 2 ( (~) )  ( ( f _  ~b)) 

+ (( r b ((f- '-  b ) - 4 ( ( f _  )) ( ( r  ( ( f _  log(l - y ) ) ) ]  

__ 22 , (2 ( ( f_ ) ) ( ( f f ) ) ( ( f f26  + 2 ( ( f _ ) ) 2  ( ( r  

+ 2 ( ( f i b  2 ( ( f - g + ) )  + 3((q;)) 2 ( ( f - -  b )  

-- )~ (( f _ g + )) (( O 2 )) + -~ (( f "-_ )) (( t~ 2 )) 

+ ( ( f -  >) ( (Os ) ) )  } 

+ (;[2.2 log  2 lz + )~2, i log  n + 22, o) 

x [ -- 422ao((f_ )) 2 (( ~ )) (( ~b log( 1 - y)))  

_ 22ao(( f_  >>-, (( ~, >) 2 

_ 4,,1.',22.o((f_))', ( (~ ) )  2 _ 22ao( ( f_) )_  ~ ((q;2)) ] 

+ (2L  i log n +21.o)-(  . . .  ) (B.4) 
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A P P E N D I X  C. S O M E  U S E F U L  S U M S  

Our starting point is the standard exponential sum: 

X L 

~ = exp(x) 
L = O  " 

(C.1) 

and a modified version thereof 

L=O /=O ~'I = exp(2x) (C.2) 

Now consider the sum appearing in Eq. (3.10), which has the form 

~ ' ( x , y ) =  I1 m ! l !  ( m + L + l ) !  
I 1 = 0  12=1 1 = 0  , ' ~ = 0  

(C.3) 

where L = l, + l_,. It is convenient to add and subtract the term /2 = 0  in 
Eq. (C.3), and set 

~ ' ( x ,  y ) =  ~ ( x ,  y) -.9~(x, y) (C.4) 

with 

Y ( x , y ) = ~  ~ Ii m!l!  ( m + L + l ) !  
= 0  / 1 = 0  / = 0  m = O  

x" 'y  L (C.5) 

and 

,~(x, y) = (m + Ii + 1 ) ! 
m = O  I 1 = 0  

x " ' f  ~ (C.6) 

In order to compute 5e(x, y) from Eq. (C.5) we first alter the order of 
summation 

L L - - I I  L L - - I  

Z ~, --~ Z 2 (C.7) 
/ 1 = 0  / = 0  / = 0  / 1 = 0  

leading immediately to 

L ~.~ ( m + l ) !  1 
~(x, y)= Y~ F, 2- '  x"'(2y) ~ (c.8) 

L=o /=0 . . . .  o re ! l !  (m + L + l ) ! 
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To perform the remaining sums, we change variables to N=m+L, 
n = m + l, and rewrite the sums as 

,~  L ,:*: m N n 

E E E ~ E E Y', (C.9) 
L = O  / = 0  m = O  N = O  n = O  m = O  

We now have 

~(x ,y )= ~ ~" ~ n _ _ 1  2 . . . . .  x"'(2y) N "' 
N=o, ,=o, ,=o m ( N + I ) !  (C.10) 

The remaining sums are now elementary. Summing over m, we obtain 

~, ~ 1 ( Xy' 
5'~ Y) = (N+ 1)! 1+ 2 -"(2y) N 

N = 0  n = 0  Y /  
(C.ll)  

and summing over n, 

.:o ( 2 y ) N  l_[�89 
'9~ ( N + I ) !  1- -4(1+x/y)  

= 0  

(C.12) 

Recognizing that 

X N exp(x ) -  1 

N=o (N-+- 1)! x 
(C.13) 

we obtain our final result: 

1 ~ ' exp(2y) -  , ~ (  x) exp[2_ff_y._�89 
5/'(x, y ) =  1 -�89 +x/y) { 2y - 1 + y  2y. �89 +x/y) 

e y - -  e .v 

= e - " - -  (C. 14) 
y - x  

A similar but simpler algebra yields the sum 5eo(X, y) from Eq. (C.6), 

so that 

e y - -  e X 

~o(X,  y ) -  - -  y -- x 

y,(x, y)=(eY_ l) (eY-e")  
\ y--x / 

(c.15) 

(C.16) 



Multifractal Dimensions for Branched Growth 739 

This result illustrates the necessary tricks for performing the types of 
sums appearing in this paper. To give a further example, the sum appearing 
in Eq. (3.9) is of the form 

/1=0  ~ = 0  m l = O  m2=O 1=0  

(L - I ~  ( M + I + I ) !  1 xLy M (C.17) 
x /l / m t ! ( m 2 + l + l ) [ ( M + L + 2 ) !  

with L = l~ + 12 and M = m, + m2. Once again, 

~ o-~12 ~ L L--I 
E Y'.--* }-'. E (C.18) 

/1=0  /2=0 I = 0  L = O  I = 0  /1=0 

so that 
L 

, tx, y ) =  
m l = 0  m 2 = 0  L = 0  / = 0  

x2L_ I ( M + l + l ) !  1 xLy M (C.19) 
m~! (m2 + l +  I)! ( M +  L + 2 ) !  

In addition to M = m ~ + m 2  and L=l~+12, we take N = M + L  and 
17 = M + I. We then rearrange the sums 

m l = 0  m 2 = 0  L = 0  1=0 N = 0  n = O  m l = 0  M = m l  

We find that the sums can now be performed to yield 

1 (e-"-- ey'~ -" 
= ~ (C.21) 6e"(x, y) 2 \ x - y /  

The other sums appearing in Section 3 can all be performed using this 
repertoire of tricks. 

A P P E N D I X  D. C O M P U T A T I O N  OF I o g ( ~ )  

Although, as we have seen, the computation of ( log ~ )  is quite 
intricate, the computation of ( ~ )  is by contrast straightforward. This is 
quite useful, since we have seen that the terms in ( log ~ )  that are oc log n 
as n ~ co are identical to those of l og (2" ) .  

Consider the initial branching point in the cluster. At this point, we 
can write the relation 
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(~(q ,  tr; n)) = de p(e){f_(en)(~(q, a; y(en) n)) 

+f+(en)(~(q,  a; (1 -y(en))n))} (D.1) 

where the averages inside the integral on the right-hand side now do not 
include the first average over e. In ref. 11, we showed how this integral 
equation can be expanded into differential equations of increasing order, 
whose solution determines the annealed dimensions a.~(q). For general a 
these differential equations have solutions of the form ( ~ ' )  = n ""j'~. Using 
this Ansatz in Eq. (D.I), we obtain 

fO zr 
n"= dep(e){f_(en)[y(en)n]"+f+(en)[(1-y(en))n] '}  (D.2) 

Factoring out n ' ,  substituting f +  = 1 + g+ ,  and then transforming to the 
q = en variable, we see that 

fo~- dq q"-'  { f  _(q) y'(q) + [ 1 + g +(q) ] [ I - y(q)]" - 1 } 

= ( ( f_  y" + (1 + g+)(1 - y ) " - 1 > >  = 0  (D.3) 

which implicitly determines lt(q, a). We can expand Eq. (D.3) so as to 
obtain It order by order in 3, the formal parameter that counts the number 
of powers o f / "  o r g + .  If f _  ~ 0 a n d g +  ~ 0 ,  we see t h a t l t ~ 0 a s w e l l .  
To implement the expansion, we write yJ ' -exp( / t  log y) and ( 1 -  y y ' =  
exp[p log( 1 - y)];  we can then expand the exponentials order by order in 
p in Eq. (D.3), thereby obtaining solutions for It to any desired order in 3. 
To second order in 3, we can write 

which gives 

(( ~ +it[log( 1 -- y) + g+ log( 1 -- y) + f _  log y]  

+ -~_it- log-( 1 -- y))) + O(0 3) = 0 

ll = 
(( log( 1 -- y) )) 

x [ 1 - ( ( f -  log y + g+ log( 1 -- y))) 
/ ((log( 1 - y))) 

((~ b ((l~ 1 2  ((-]-~og( 1 - y)-- Y)))I))--~ + 0(63) 

(D.4) 

+ (D.5) 
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or, recalling the definitions of 2 and 2' [Eqs. (A.5) and (A.10)], 

It = 2((~p)) [ 1 + 2 ( ( f _  log y + g+ log(l - y))) + 2'((~b)) + O(d2)] 

(D.6) 

which agrees with the term oc logn in Eq. (3.43). Note that ((~b))=0 
implies that/~ = 0 to any order in 6. Clearly terms of higher order in 6 can 
be obtained from Eq. (D.3) with considerably less labor than by direct per- 
turbative computation. 

APPENDIX E. 6-EXPANSION AS AN EXPANSION IN q - 1  

The perturbation expansion derived above can be formally written in 
the following form: 

(log ~ )  = ((~,)) Ft(q,a;n)+((~O2)) F2(q,a;n)+ ... (E.1) 

because the last vertex (at the far right) of any diagram is always averaged 
without any powers of log y or l o g ( l - y ) ,  and can always be either f _ ,  
g+,  or a product of factors of these two. Thus this last vertex can always 
be regarded as being of the form ((~b")). [This property is satisfied by 
Eqs. (3.43) and (B.1)-(B.4)]. Recall the definition of ~: 

xq(q) + (1 --X(~))q-- 1 (E.2) 
~(l/; q, a ) = f _ ( ~ / ) + g + ( r / ) = y - - ~  (1 -y(r / ) )  ~ 

At q =  1, for o = 0  we have ~b =0, which implies that both ar and the 
apparent a~(q) are equal to zero. Thus it is clear that 

O(J/; q, cr.~(q)) = O ( q -  1) (E.3) 

Since by definition ((tp(q, cr.~,(q))))=0 exactly, Eq. (E.1) together with 
(E.3) implies that c ry (q)=a~ , (q )+  O ( ( q - 1  )z), with 

(( r cL~(q) ) )) = O( ( q -  1) 2) (E.4) 

and 

( (  ~,'-))  = O ( ( q  - 1) 2) (E.5) 
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